The Role of Photopheresis in the Treatment of Bronchiolitis Obliterans Syndrome

Selim M. Arcasoy, M.D.

Medical Program Director

Lung Transplantation Program

NewYork-Presbyterian Hospital

Columbia University Medical Center

New York, NY

Terminology/Definitions

- OB=BO: Obliterative bronchiolitis or bronchiolitis obliterans
 - Histopathologic term used to describe the finding of fibrous obliteration of small airways after LTx
- BOS: Bronchiolitis obliterans syndrome
 - Clinical/physiologic definition of chronic lung allograft dysfunction caused by OB and characterized by progressive airflow limitation
 - Term originally proposed in 1993 and revised in 2002

Bronchiolitis Obliterans Syndrome Clinical Impact

Very common and deadly

- Cumulative risk of 50-80% between 5 and 10 years after lung transplantation
- Leading cause of long-term mortality
 - Directly or indirectly accounts for at least 30 to 50% of deaths after third post-operative year
 - Less than 40% survival at 5 years after its onset

Normal

Injury to airway epithelium Alloimmune or non-alloimmune (rejection, infection, aspiration, ischemia)

Pathogenesis of OB

Innate and adaptive immune response

(PMN, macrophage, DC, T- and B-lymphocytes) IL-1, IL-2, IL-6, IL-8, IL-12, TNF-α, MCP-1, complement, IFN-γ, RANTES, ROS, NO, peroxides, leukotrienes Inflammatory response Vascular changes

Final common pathway Repair response

Fibroblast proliferation EC matrix deposition

TGF-ß,PDGF, IGF, FGF, ET-1

Mechanisms and Therapy of OB After Lung Tx Adapted from *Nicod. Proc Am Thorac Soc 2006;3:444*

Prevention and Treatment of BOS Potential Therapies

- Induction therapy
- Tacrolimus
- Mycophenolate mofetil
- Everolimus
- Aerosol Cyclosporine
- Azithromycin
- Antireflux procedures for GER
- Statins

- Extracorporeal photopheresis
- Lympholytic therapy
- Total lymphoid irradiation
- Donor bone marrow tx
- Cyclophosphamide
- Methotrexate
- Preservation of airway microcirculation

Potential Mechanisms of ECP

- Induction of T-cell apoptosis
 - Only 5% of lymphocyte load is treated with each cycle of ECP
- Induction of immunologic tolerance rather than immunosuppression
 - No altered T- and B-cell function in patients after ECP
 - Acquisition of a tolerogenic phenotype by immature dendritic cells
 - Increase in regulatory T-cells
- Conflicting effects on cytokine production
- "T-cell vaccination"
 - Th1 immune response against alloreactive T cells

ECP Process

- Removal of a certain percentage of a patient's blood (2-5% of total circulating leukocytes)
- Separation of blood into leukocyte-enriched (buffy coat) and –depleted components
- Buffy coat is exposed to UV light in the presence of 8-methoxypsoralen within the photoactivation chamber, which forms covalent bonds to DNA pyrimidine bases, cell surface and cytoplasmic components of exposed leukocytes
- Leukocyte apoptosis, changes in dendritic cells, cytokine production and induction of Tregs

ECP History in Lung Transplantation

- First report in 3 lung transplant patients with BOS published in 1995
- Initially used in the context of refractory BOS (stages 2-3) with demonstration of initial stabilization or improvement in FEV₁
- Literature suggested its efficacy in persistent acute rejection and early BOS, preventing further loss of lung function
- 2 recent larger studies suggested reduction in the rate of decline in lung function at all stages of BOS

Extracorporeal Photopheresis Early Clinical Studies in Lung Transplantation

Case series including 3-14 patients

Slovis. NEJM 1995;332:962—(n=3)

Salerno. JTCS 1999;117:1063—(n=8)

O'Hagan. Chest 1999;115:1459—(n=6)

Villanueva. Ann Transplant 2000;5:44—(n=14)

- Reduced rate of decline in FEV₁ in most patients
 - More likely to be effective in earlier stages of BOS but stabilization of lung function observed in stage 3 BOS

Extracorporeal Photopheresis

Salerno. JTCS 1999;117:1063

ECP. A 10-year Single Center Experience Benden et al. Transplantation 2008; 86:1625

- 24 patients underwent ECP between 1997-2007
- 12 cycles 4-6 weeks apart
- BOS grades
 - Stage 1 N=5
 - Stage 2 N=2
 - Stage 3 N=5

TABLE 1. Patient demographics	
Total number of patients	24
Male/female	18/6
Mean age at transplant (SD), (yrs)	40.8 (12.7)
Diagnosis at transplant	
CF (%)	9 (37)
COPD (%)	7 (29)
IPF (%)	5 (21)
PAH (%)	3 (13)
Type of transplant	
Double lung (%)	21 (87)
Single lung (%)	3 (13)
Indication for ECP	
BOS (%)	12 (50)
Recurrent AR (%)	12 (50)
Mean baseline FEV ₁ posttransplant (SD), (L)	3.1 (0.8)

CF, cystic fibrosis; COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; PAH, pulmonary arterial hypertension; ECP, extracorporeal photopheresis; BOS, bronchiolitis obliterans syndrome; AR, acute rejection; FEV₁, forced expiratory volume in 1 sec.

ECP. A 10-year Single Center Experience Rate of Decline in FEV1 Before and After ECP

Benden et al. Transplantation 2008; 86:1625

Decline in FEV1
Pre ECP 112 ml/mo
Post ECP 12 ml/mo
Mean change (95% Cl)
100 (28-171) ml
P=0.011

ECP. A 10-year Single Center Experience Benden et al. Transplantation 2008; 86:1625

- ECP for recurrent acute rejection in 12 patients
- ≥ 2 biopsy proven episodes of acute rejection (≥ grade A2)
 - All except one had follow-up biopsy during ECP
 - Only 2 patients had an episode of ≥ grade A2 rejection
 - None developed BOS with clinical stabilization
- No adverse effects
- Median survival from LTx 7 yrs, from ECP 4.9 yrs

The Efficacy of Photopheresis for BOS Morrell. JHLT 2010;29:424

- 60 patients with BOS between Jan 2000-Dec 2007
 - 34 early- (within 2 years) and 26 late-onset BOS
- Primary endpoint: rate of change in lung function before and after initiation or ECP
- BOS stage prior to ECP
 - Stage I: 8.3%, II: 33.3% and III: 58.3%
- ECP schedule (cycle=2 days)
 - 5 cycles first month, 4 cycles in next 2 months and 3 cycles next 3 months to complete 6 months

Absolute FEV₁ Pre- and Post-ECP Slope of Linear Regression Line

Patient Demographics

Morrell. JHLT 2010;29:424

Demographics	Result No (%) or Median (Range)
Patients	60 (100)
Age (years)	58 (21-72)
Gender (male)	32 (53)
Pretransplant diagnosis	
COPD	26 (43)
CF	11 (18)
IPF	9 (15)
Type of Ltx (Bilateral)	57 (95)
BOS stage	
1	5 (8.3)
2	20 (33.3)
3	35 (58.3)
Prior ATG treatment	58 (96.7)

Results (I) Morrell. JHLT 2010;29:424

- 6-month pre and post-ECP treatment
 - Pre-ECP mean rate of decline in FEV₁ -116 ml/mo
 - Post-ECP mean rate of decline in FEV₁ -28.9 ml/mo
 - Mean difference in rate of decline 87.1 ml/mo (95% CI 57.3-116.9 ml/mo, p<0.0001)
 - Decline in FEV₁ in a 6-month period 696 ml vs 173 ml
- When FEV₁ was entered as 0 in patients who died after initiation of ECP, mean difference in rate of decline was still significant (58.7 ml/mo, p=0.003)
- When 5 BOS stage I patients were excluded, mean difference in rate of decline remained significant

Change in Rate of Decline in FEV₁

Results (II) Morrell. JHLT 2010;29:424

- Rate of decline was reduced after initiation of ECP in 44 patients (79%)
 - 14 (35%) of these patients had an improvement in FEV₁
 with an increase above pre-ECP values
 - Mean rate of increase in these patients was 20.1 ml/mo and mean gain in lung function in 6 mo was 120.6 ml
- Clinical characteristics were not predictive
- 12-month efficacy in the mean rate of FEV₁ decline
 - -21.4 ml/mo and decline of 128.4 ml in 12 month period
 - Mean difference pre and post-ECP 94.6 ml/mo (p<0.0001)

Rate of Decline in FEV₁ Pre-ECP, 6 months and 12 months Post-ECP

Safety and Tolerability

- 10 of 60 patients had complications
- 8 (13%) with indwelling catheter related bacteremia
- 1 with partially occlusive thrombus in SVC
- 1 with transient hypotension during ECP
- No malignancies

Guidelines On The Use of Therapeutic Apheresis in Clinical Practice-Evidence-Based Approach

Apheresis Applications Committee of the American Society for Apheresis

Disease	Modality	Category	Recommendation Grade	Page
Lung Allograft rejection	ECP	2	1C	126 Refs 173, 174, 400-412

<u>Category 2:</u> Disorders for which apheresis is accepted as a secondline therapy, either as a standalone treatment or in conjunction with other modes of therapy

<u>Recommendation Grade:</u> Strong recommendation, low quality evidence; from observational studies or case series Implications: Strong recommendation but may change when higher quality evidence becomes available

Extracorporeal Photopheresis (ECP)

- Autoimmune diseases
 - Scleroderma: Category 4, grade 1A
- Graft versus host disease (skin vs non-skin)
 - Category 2 and 3; grade 1B and 2C
- Cutaneous T-cell lymphoma (erythrodermic versus non-erythrodermic)
 - Category 1 and 3, grade 1B and 2C
- Prophylaxis and treatment of heart transplant rejection
 - Category 1 and 2, grade 1A and 1B
- Lung transplant rejection
 - Category 2, grade 1C

Guidelines On The Use of Therapeutic Apheresis in Clinical Practice-Evidence-Based Approach

Apheresis Applications Committee of the American Society for Apheresis

Frequency

- Variable: Biweekly to every 2 weeks, larger intervals of every 4-6 weeks reported
- Generally weekly cycles for 4-6 wks, then every other week for 6 weeks followed by monthly cycles

Duration and discontinuation

- Optimal duration unknown
- Number of treatment cycles varied between 6-24
- Long-term continuation may be necessary in responders

Conclusions

- BOS is the single most important cause of limited long-term survival after lung transplantation
- There are limited treatment options for BOS, none of which have been approved
- Photopheresis is one treatment option for BOS, which has been shown to result in preservation of lung function with low side-effect profile
 - Accepted as second-line therapy and recommended strongly by the American Society of Apheresis
 - ECP should be made available for patients with BOS