2004 ANNUAL REPORT ESRD CLINICAL PERFORMANCE MEASURES PROJECT

OPPORTUNITIES TO IMPROVE CARE FOR ADULT IN-CENTER HEMODIALYSIS, ADULT PERITONEAL DIALYSIS, and PEDIATRIC IN-CENTER HEMODIALYSIS PATIENTS

DECEMBER 2004

Department of Health and Human Services Centers for Medicare & Medicaid Services Office of Clinical Standards & Quality Baltimore, Maryland

Data on adult in-center hemodialysis patients are from October–December 2003 Data on adult peritoneal dialysis patients are from October 2003–March 2004 Data on pediatric in-center hemodialysis patients are from October–December 2003 Suggested citation for this Report is as follows:

Centers for Medicare & Medicaid Services. 2004 Annual Report, End Stage Renal Disease Clinical Performance Measures Project. Department of Health and Human Services, Centers for Medicare & Medicaid Services, Office of Clinical Standards & Quality, Baltimore, Maryland, December 2004.

Note: The clinical data collected for the 2004 ESRD Clinical Performance Measures Project were from the time period of October–December 2003 for the in-center hemodialysis patients and October 2003–March 2004 for the adult peritoneal dialysis patients.

2005 Data Collection Effort

In 2005, we will again collect data for the ESRD Clinical Performance Measures on a national sample of adult in-center hemodialysis, adult peritoneal dialysis, and all pediatric in-center hemodialysis patients.

Any questions about the Project may be addressed to your ESRD Network staff or to members of the ESRD Clinical Performance Measures Quality Improvement Workgroup (APPENDICES 4 & 5).

Look for this Report, as well as other ESRD Clinical Performance Measures Project and Core Indicators Project Reports, on the Internet at: www.cms.hhs.gov/esrd/1.asp.

Copyright Information: All material appearing in this Report is in the public domain and may be reproduced or copied without permission; citation of the source, however, is appreciated.

TABLE OF CONTENTS

SECTION	TITLE	PAGE
	Table of Contents	3
	Acknowledgments/Acronyms	4
Ι.	INTRODUCTION	5
II.	BACKGROUND AND PROJECT METHODS	6
	A. Medicare's ESRD Program	6
	B. Project Methods	7
	C. Sample Selection	7
	D. Report Format	10
III.	CLINICAL PERFORMANCE MEASURES (CPMs)	11
IV.	OTHER SIGNIFICANT FINDINGS AND TRENDS	15
V.	ADULT IN-CENTER HEMODIALYSIS PATIENTS	21
	A. Adequacy of Hemodialysis	21
	B. Vascular Access	25
	C. Anemia Management	
	D. Serum Albumin	
VI.	ADULT PERITONEAL DIALYSIS PATIENTS	42
	A. Adequacy of Peritoneal Dialysis	42
	B. Anemia Management	46
	C. Serum Albumin	
VII.	PEDIATRIC IN-CENTER HEMODIALYSIS PATIENTS	50
	A. Clearance	50
	B. Vascular Access	52
	C. Anemia Management	54
	D. Serum Albumin	58
VIII.	REFERENCES	59
IX.	LIST OF TABLES AND FIGURES	61
	1. List of Tables	61
	2. List of Figures	62
Х.	APPENDICES	67
	1. ESRD CPMs for 2004 Data Collection Effort	67
	2. 2004 CPM Data Collection Form – In-Center Hemodialysis	72
	3. 2004 CPM Data Collection Form – Peritoneal Dialysis	78
	4. Centers for Medicare & Medicaid Services (CMS) Offices and ESRD Networks	84
	5. ESRD CPM Quality Improvement Committee Members	85
	6. List of Publications/Abstracts/Supplemental Reports of ESRD CPM and Core	
	Indicators Data	86
	7. 2004 National CPM Data Collection, Adult In-Center Hemodialysis Patients –	
	National and Network Profiles	94
	8. 2004 ESRD CPM Outcome Comparison Tool – Adult In-Center Hemodialysis Patients	97
	9. 2004 ESRD CPM Outcome Comparison Tool – Adult Peritoneal Dialysis Patients	99

ACKNOWLEDGMENTS

The Centers for Medicare & Medicaid Services (CMS), formerly the Health Care Financing Administration (HCFA), wishes to acknowledge the following groups and persons without whose efforts this Report would not have been possible:

- The members of the End-Stage Renal Disease (ESRD) Clinical Performance Measures (CPM) Quality Improvement (QI) Committee and the members of the Peritoneal Dialysis, the Vascular Access, and the Pediatric Subcommittees (See Appendix 5).
- The eighteen ESRD Network Organizations throughout the United States (See Appendix 4).
- The following CMS Central Office staff: Diane L. Frankenfield, DrPH, Pamela R. Frederick, and Ava Marie Chandler.
- The following staff at The Renal Network, Inc.: Susan A. Stark, Executive Director, Bridget Carson, Assistant Director, Raynel Kinney, RN, CNN, CPHQ, QI Director, Rick Coffin, Program Analyst, and Pat Hendricks, RN, CNN, QI Coordinator.
- The staff at more than 3,200 dialysis facilities in the United States who abstracted the requested information from medical records on more than 8,000 adult in-center hemodialysis, adult peritoneal dialysis, and pediatric in-center hemodialysis patients.
- The many other individuals in the renal community and CMS who contributed to this work.

ACRONYMS List of Commonly Used Acronyms

	Hgb Hemoglobin
	IV Intravenous
AV Arterio Venous	K/DOQL Kidney Disease Outcomes Quality Initiative
AVF Arteriovenous Fistula	Kt/V or Kt/V Urea Clearance x Time/the Volume of
BCG Bromcresol Green Laboratory Method	Distribution of Urea (fractional clearance of urea)
BCP Bromcresol Purple Laboratory Method	KUf Ultrafiltration Coefficient
BMI Body Mass Index	LDO Large Dialysis Organization
BSA Body Surface Area	NIPD Nightly Intermittent Peritoneal Dialysis
BUN Blood Urea Nitrogen	NKF National Kidney Foundation
CAPD Continuous Ambulatory Peritoneal Dialysis	PET Peritoneal Equibration Test
CCPD Continuous Cycling Peritoneal Dialysis	PD Peritoneal Dialysis
CI Confidence Interval	QA Quality Assurance
CIP Core Indicators Project	QI Quality Improvement
CMS Centers for Medicare & Medicaid Services	RRF Residual Renal Function
CPM Clinical Performance Measure	SC Subcutaneous
CQI Continuous Quality Improvement	SD Standard Deviation
CrCI Creatinine Clearance	SIMS Standard Information Management System
CSC Computer Sciences Corporation	SI Units Système International Units
DM Diabetes Mellitus	SLE Systemic Lupus Erythematosus
DOQI Dialysis Outcomes Quality Initiative	spKt/V Single-Pool Kt/V
D/P Cr Ratio Dialysate/Plasma Creatinine Ratio	TCV Total Cell Volume
ESRD End-Stage Renal Disease	TSAT Transferrin Saturation
FSGS Focal and Segmental Glomerulosclerosis	UKM Urea Kinetic Modeling
GFR Glomerular Filtration Rate	URR Urea Reduction Ratio
HCFA Health Care Financing Administration	USRDS United States Renal Data System
HCQIP Health Care Quality Improvement Program	VA Vascular Access
HD Hemodialysis	

I. INTRODUCTION

The ESRD Clinical Performance Measures (CPM) Project, now in its eleventh year, is a national effort led by the Centers for Medicare & Medicaid Services (CMS), formerly the Health Care Financing Administration (HCFA), and its eighteen ESRD Networks to assist dialysis providers to improve patient care and outcomes. Since 1994 the Project has documented continued improvements, specifically in the areas of adequacy of dialysis and anemia management. The providers of dialysis services are to be commended for their ongoing efforts to improve patient care.

The 2004 ESRD CPM Annual Report describes the findings of several important clinical measures and/or characteristics of a nationally representative random sample of adult (aged \geq 18 years) in-center hemodialysis patients and peritoneal dialysis patients. Included again this year are the findings for all in-center hemodialysis patients aged < 18.

The most recent data described in this Report are from the 2004 study period which includes the months of October-December 2003 for the in-center hemodialysis patients and October 2003-March 2004 for the peritoneal dialysis patients. This Report also compares the 2004 study period findings to findings from previous study periods AND it identifies opportunities to improve care for dialysis patients.

The full Report can be found on the Internet at <u>www.cms.hhs.gov/esrd/1.asp</u>. PowerPoint files containing all of the figures in this Report can also be found at this Internet site. Please feel free to use any of these slides in presentations and quality improvement activities.

This Report contains six major sections: Background and Project Methods, Clinical Performance Measures (CPMs), Other Significant Findings and Trends, Adult In-Center Hemodialysis Patients, Adult Peritoneal Dialysis Patients, and Pediatric In-Center Hemodialysis Patients (aged < 18). The lists of tables and figures have been moved to the back of the Report as Section IX (page 61).

This Report also contains some features or tools to assist dialysis providers in using the information from this project. Appendices 8 and 9 (pages 97 and 99) contain tear out CPM Outcomes Comparison Tools (one for hemodialysis and one for peritoneal dialysis) that providers can use to record their facilityspecific results for comparisons to national and Network findings (Network rates are only available for hemodialysis). (Note: Each provider will have to calculate its own facility-specific results to record on this tool.) Even though the national and Network hemodialysis findings included in this Report are from the time period October - December 2003 (national peritoneal dialysis findings are from the time period October 2003 – March 2004), the facility data that you calculate and enter on this form can be from any time period. Appendix 7 provides you with some Network-level hemodialysis findings that you can use to record on your Network's Outcomes Comparison Tool (Appendix 8). On the back of each tool are two graphs that can be used to record monthly facility-specific adequacy and anemia management results. We encourage each dialysis facility to use these tools. Consider posting the charts somewhere in the dialysis facility that is visible to staff and patients so everyone can follow the monthly entries.

The **Background and Project Methods** section beginning on page 6, provides information on the Medicare ESRD program and why the ESRD CPM Project was initiated. Patient selection criteria and data collection and analysis methodologies are also described.

The **Clinical Performance Measures (CPMs)** section beginning on page 11, has a short summary of each CPM collected for this project as well as a brief summary of the 2004 CPM findings. Appendix 1 (page 67) provides a more detailed description of each CPM.

The **Other Significant Findings and Trends** section beginning on page 15, provides highlights of important findings from the 2004 ESRD CPM Project.

The Adult In-Center Hemodialysis Patients, Adult Peritoneal Dialysis Patients, and the Pediatric In-Center Hemodialysis Patients sections describe the findings for each cohort for the 2004 study period and compare these findings to previous study periods.

This Report provides the dialysis community with an initial look at Network and national profiles for the clinical measures that were collected for the ESRD CPM Project. While significant improvements in care have occurred, the opportunities to improve care for dialysis patients in the U.S. in the areas of adequacy of dialysis, vascular access, and anemia management continue. Every dialysis caregiver should be familiar with the clinical practice guidelines developed by the Renal Physicians Association (1) and the National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF-K/DOQI) (2, 3, 4, 5). Your Network staff and Medical Review Board are also available to assist you in identifying opportunities for improvement.

In the future, the ESRD Networks, in collaboration with dialysis facilities, will continue to assess the ESRD CPMs for dialysis patients in the U.S. The purpose of this effort will be to assess improvement in care and to encourage further improvements. The ultimate goal is to improve patient care and outcomes for all ESRD patients.

Serum Albumin

Although serum albumin is not a CPM for this data collection period, it is one of the original core indicators and was chosen as an indicator for assessing mortality risk for adult in-center hemodialysis patients and adult peritoneal dialysis patients. This project collects the serum albumin value as well as the test method, (bromcresol green [BCG] method and bromcresol purple [BCP] method), because these two methods are commonly used for determining serum albumin concentrations and have been reported to yield systematically different results the BCG method yielding higher serum albumin concentrations than the BCP method (6). For the history of this project, mean serum albumin values < 3.5 g/dL (35 g/L) by the BCG method have been defined as an indicator of inadequate serum albumin. Since the percent of mean serum albumin values < 3.2 g/dL (32 g/L) by the BCP method was nearly the same as the percent of mean serum albumin values < 3.5 g/dL (35 g/L) by the BCG method, we have historically for the purpose of this report also defined a BCP result < 3.2 g/dL (32 g/L) as an indicator of inadequate serum albumin. In June 2000, the NKF-K/DOQI Guidelines for Nutrition in Chronic Renal Failure were published. Guideline 3 of the Clinical Practice Guidelines states that a pre-dialysis or stabilized serum albumin equal to or greater than the lower limit of normal range (approximately 4.0 g/dL [40 g/L] for the bromcresol green method) is the outcome goal (7).

Findings from this project allow us to report the percent of patients with mean serum albumin values $\geq 4.0 \text{ g/dL}$ (40 g/L) (BCG method) or $\geq 3.7 \text{ g/dL}$ (37 g/L) (BCP method) and the percent of patients with mean serum albumin values $\geq 3.5 \text{ g/dL}$ (35 g/L) (BCG method) or $\geq 3.2 \text{ g/dL}$ (32 g/L) (BCP method) for adult hemodialysis patients in each Network area and nationally, and nationally for adult peritoneal dialysis patients and pediatric hemodialysis patients.

Pediatric In-Center Hemodialysis Patients

Although there are no CPMs established for the pediatric age group, demographic and clinical information from October-December 2003 were collected on all hemodialysis patients aged < 18 years in the U.S. in order to describe several core indicators of dialysis care. These core indicators included clearance, vascular access, anemia management, and serum albumin.

II. BACKGROUND AND PROJECT METHODS

A. MEDICARE'S ESRD PROGRAM

The Social Security Amendments of 1972 (PL 92-603) extended Medicare coverage to individuals with end-stage renal disease (ESRD) or chronic kidney failure who require dialysis or a kidney transplant to maintain life. To qualify for Medicare under the renal provision, a person must have ESRD and either be entitled to a monthly insurance benefit under Title II of the Social Security Act (or an annuity under the Railroad Retirement Act); or be fully or currently insured under Social Security; or be the spouse or dependent child of a person who meets at least one of these last two requirements. There is no minimum age for eligibility under the renal disease provision. The incidence of treated ESRD in the United States is 333 per million population (8). As of December 31, 2003, there were 310,095 patients receiving dialysis therapy in the United States (9).

ESRD Health Care Quality Improvement Program (HCQIP)

The CMS, which oversees the Medicare program, contracts with 18 ESRD Network Organizations throughout the United States. The ESRD Networks stimulate and facilitate improvements in the quality of care for ESRD patients throughout the U.S. In 1994, CMS, with input from the renal community, reshaped the approach of the ESRD Network program to quality assurance and improvement in order to respond to the need to improve the care of Medicare ESRD patients (10). This approach was named the ESRD Health Care Quality Improvement Program (HCQIP).

The ESRD HCQIP gives the ESRD Networks and CMS a chance to demonstrate that health care provided to Medicare beneficiaries with renal disease can be measurably improved. The HCQIP is based on the assumption that most health care providers welcome information and, where necessary, help in applying the tools and techniques of quality management (11).

ESRD Core Indicators Project

One activity included in the ESRD HCQIP was the National/ Network ESRD Core Indicators Project (CIP). This project was initiated in 1994 as a national intervention approach to assist dialysis providers in the improvement of patient care and outcomes. The ESRD CIP was CMS's first nationwide populationbased project designed to assess and identify opportunities to improve the care of patients with ESRD (12). This project established the first consistent clinical ESRD database. The elements included in the database represent clinical measures thought to be indicative of key components of care surrounding dialysis. As such, the data points are considered "indicators" for use in triggering improvement activities. The ESRD CIP was merged with the ESRD Clinical Performance Measures Project in 1999.

ESRD Clinical Performance Measures Project

Section 4558(b) of the Balanced Budget Act (BBA) of 1997 required CMS to develop and implement by January 1, 2000, a method to measure and report the quality of renal dialysis services provided under the Medicare program. To implement this legislation, CMS funded the development of Clinical Performance Measures (CPMs) based on the National Kidney Foundation (NKF) Dialysis Outcomes Quality Initiative (DOQI) Clinical Practice Guidelines (13, 14, 15, 16).

For information regarding the development of the CPMs, refer to the 1999 Annual Report, End-Stage Renal Disease Clinical Performance Measures Project on the Internet at www.cms.hhs.gov/esrd/1.asp.

On March 1, 1999, the ESRD CIP was merged with the ESRD CPM Project, and this project is now known as the ESRD CPM Project. The ESRD CPMs are similar to the core indicators with the addition of measures for assessing vascular access.

This 2004 ESRD CPM Project Annual Report provides the results of the CPMs on a sample of adult in-center hemodialysis patients and adult peritoneal dialysis patients. Findings on all pediatric (aged < 18 years) in-center hemodialysis patients are also included. The Report does not provide results on a dialysis facility-specific basis. The quality of dialysis services is reported for adult and pediatric in-center hemodialysis patients for the last quarter in 2003 and adult peritoneal dialysis patients for the time period October 2003–March 2004.

CMS and the ESRD Networks are committed to improving ESRD patient care and outcomes by providing tools that can be used by the renal community in assessing patient care processes and outcomes and by identifying opportunities for improvement. One of these tools includes data feedback reports based on the clinical information obtained from the ESRD CPM Project. We invite the renal community to provide us with ideas and feedback as to ways CMS and the Networks can best help the community to improve patient care.

B. PROJECT METHODS

The purpose of the ESRD CPM Project is to provide comparative data to ESRD caregivers to assist them in assessing and improving the care provided to dialysis patients. The data collected in 1994 (for the time period October-December 1993) established a baseline estimate for important clinical measures of care for adult in-center hemodialysis patients in the United States (17). From 1994 to 1998, CMS collected ESRD data under the ESRD CIP. The purpose of these data collections was to determine whether patterns in these clinical measures had changed and if opportunities to improve care continued to exist (18-22).

The initial data collection effort for the ESRD CPMs was conducted in 1999. This effort examined data from October–December 1998 for adult in-center hemodialysis patients, and from October 1998 to March 1999 for adult peritoneal dialysis patients. Information to calculate the CPMs was collected and further opportunities to improve care were identified (23). This Report describes the findings from the sixth data collection effort for the ESRD CPMs which was conducted in 2004. Data were collected from October-December 2003 for adult and pediatric in-center hemodialysis patients, and from October 2003 -March 2004 for adult peritoneal dialysis patients. These data help to determine if there are opportunities to improve care and to evaluate patterns of care across the nation.

The Sample

Annually, each ESRD Network conducts a survey of ESRD facilities to validate the census of ESRD patients in the Network at the end of the calendar year. In March 2004, a listing of adult (aged \geq 18 years as of September 30, 2003) in-center hemodialysis and adult peritoneal dialysis patients who were alive and dialyzing on December 31, 2003, was obtained from each of the 18 ESRD Networks.

From this universe of patients, a national random sample, stratified by Network, of adult in-center hemodialysis patients was drawn. The sample size of adult in-center hemodialysis patients was selected to allow estimation of a proportion with a 95% confidence interval (CI) around that estimate no larger than 10 percentage points (i.e., \pm 5%) for Network-specific estimates of the key Hemodialysis CPMs and other indicators. Additionally, a 30% over-sample was drawn to compensate for an anticipated non-response rate and to assure a large enough sample of the adult in-center hemodialysis patient population who were dialyzing at least six months prior to October 1, 2003. The final sample consisted of 8,881 adult in-center hemodialysis patients.

The peritoneal dialysis patient sample included a random selection of 5% of adult peritoneal dialysis patients in the nation. Additionally, a 10% over-sample was drawn to compensate for an anticipated non-response rate. The final sample consisted of 1,453 peritoneal dialysis patients.

All pediatric (aged < 18 years) in-center hemodialysis patients in the U.S. (n = 809) were included in the 2004 ESRD CPM Study.

C. SAMPLE SELECTION

Data Collection

Two data collection forms were used: a four-page in-center hemodialysis form and a four-page peritoneal dialysis form (Appendices 2, 3); the use of these forms was authorized through the National Institutes of Health (NIH) clinical exemption process. Descriptive information on each selected patient and dialysis facility was printed onto gummed labels, and sent to the individual ESRD Networks along with the forms to be used to collect the data. If demographic information (e.g., name, date of birth, race) or clinical information (e.g., date that initial dialysis occurred) was incorrect, facility staff were asked to correct the information on the forms. Staff at ESRD facilities were also asked to abstract ethnicity and clinical information from the medical record of each selected patient. For the first time this study year, electronic data were accepted from the large dialysis organizations (LDOs) (Fresenius Medical Care N.A., Dialysis Clinic, Inc. Renal Care Group, Inc., Gambro Healthcare/USA, and National Nephrology Associates). As there had been no prior validation of the quality of electronic data from the LDOs, the electronically submitted data were entered onto paper forms, and these paper forms were sent to facilities with one or more sampled patients. Facility staff had the opportunity to review the data provided on the paper form and make changes/corrections if needed. These updated paper collection forms were then forwarded to the appropriate Network, where data were reviewed for acceptability and manually entered into the Network database using the Standard Information Management System (SIMS).

Facilities that were not part of an LDO (non-LDO facilities) with one or more patients in the samples received a blank paper data collection form as in past study years. Clinical information contained in the medical record was abstracted for each patient in the adult hemodialysis sample and for all pediatric in-center hemodialysis patients who received in-center hemodialysis at anytime during October, November, and December 2003. Clinical information contained in the medical records was also abstracted for each patient in the adult peritoneal dialysis sample who was receiving peritoneal dialysis at any time during the two-month periods of October-November 2003, December 2003-January 2004, and February-March 2004. The completed data collection forms were then forwarded to the appropriate Network, where data were reviewed for acceptability and manually entered into SIMS.

In August 2004, each Network sent a copy of their VISION data files to CMS's contractor, Computer Sciences Corporation (CSC) where the data were aggregated and then submitted to CMS for data analysis.

Adult In-Center Hemodialysis

Initial analyses for the CPMs and other indicators focused on the following elements: paired pre- and post-dialysis BUN values with patient height and weight and dialysis session length (used to calculate spKt/V values); hemoglobin values; vascular access information; and serum albumin.

Inclusion of a case in the analysis required that data be available for at least one of the months in the three-month project period, with at least one paired pre- and post-dialysis BUN, at least one hemoglobin, and at least one serum albumin. We were able to include for analysis 8,634 of the 8,881 patients from the sample (response rate = 97%) (TABLE 1). In the vascular access section, some findings are presented for incident patients (see definition of incident patients, Table 8 page 26) alone. Other findings in this section are presented for prevalent or all patients, which includes incident patients.

Characteristics regarding the gender, race, ethnicity, age, diagnosis, and duration of dialysis (years) for these patients are shown in Table 2. As expected, the characteristics of this random sample were very similar to the characteristics of the overall US hemodialysis population (8). Data regarding Epoetin use, serum ferritin concentrations, transferrin saturation, iron use, dialyzer KUf (ultrafiltration coefficient, the permeablility of a dialyzer membrane to water), and actual time on dialysis were also analyzed. The initial analysis utilized SAS v.8.02 and Statistical Package for the Social Sciences (SPSS) software (24, 25).

TABLE 1: Number of adult in-center hemodialysis patients in
each Network in December 2003, sample size and response rate
for the 2004 ESRD CPM Project.

Network	# HD Patients Dec 2003	Sample Size	# Acceptable Forms^	Response Rate %
1	9,433	487	475	97.5
2	20,301	497	485	97.6
3	12,025	491	488	99.4
4	12,909	493	479	97.2
5	16,665	495	482	97.4
6	26,214	501	487	97.2
7	16,282	495	476	96.2
8	15,645	495	482	97.4
9	19,652	497	490	98.6
10	11,551	491	461	93.9
11	16,869	496	475	95.8
12	10,157	488	442	90.6
13	11,921	491	488	99.4
14	23,721	499	487	97.6
15	12,130	491	482	98.2
16	6,880	481	478	99.4
17	14,257	494	482	97.6
18	21,980	499	495	99.2
Total	278,592	8,881	8,634	97.2

^ A form was considered acceptable if the patient met the selection criteria for inclusion in the study and if data were provided for at least one of the months in the fourth quarter of 2003 for the following items: 1) hemoglobin; 2) paired pre- and post-dialysis BUN values; and 3) serum albumin value.

Two or more monthly values for these clinical measures were available for 96% of patients for hemoglobin and 96% for serum albumin by either BCG or BCP method. Monthly hemoglobin values were available for 91% of patients. At least one monthly paired pre-and post-dialysis BUN value was available for 100% of patients, and two or more were available for 95%. Monthly paired pre- and post-dialysis BUN values were available for 84% of patients.

TABLE 2: Characteristics of adult in-center hemodialysispatients in the 2004 ESRD CPM Project compared to those of allin-center hemodialysis patients in the US in 2002.

Patient Characteristic	2004 CP	M Sample	All US in 2002*			
	for A: # ^	# ^ %		s %		
TOTAL	8,634	100	280.4	100		
GENDER						
Men	4,601	53	150.7	54		
Women	4,033	47	129.6	46		
RACE American Indian/	164	2	4.1	1		
Alaska Native	262	2	4.1	1		
Asian/Pacific Islander	2 096	4	10.8	4		
Black	5,080	30 55	100.2	38 55		
white	4,769	22	153.8	22		
Other/Unknown	252	3	5.4	2		
ETHNICITY Hispanic	1,120	13	37.6	13		
Non-Hispanic	7,359	85	242.7	87		
Unknown	155	2	0	0		
AGE GROUP (years)						
18-49	2,031	24	63.5 *	* 23		
50-59	1,739	20	55.7	20		
60-64	944	11	31.4	11		
65-69	1,031	12	33.5	12		
70-79	1,908	22	64.2	23		
80+	981	11	30.8	11		
CAUSE of ESRD						
Diabetes mellitus	3,650	42	117.8	42		
Hypertension	2,413	28	78.9	28		
Glomerulonephritis	834	10	30.6	11		
Other/Unknown	1,737	20	53.0	19		
DURATION of DIALYS	SIS (years) 1.082	13				
0.5-0.9	1,070	12				
1.0-1.9	1,688	20				
2.0-2.9	1,194	14				
3.0-3.9	933	11				
4.0+	2,645	31				

*USRDS: 2004 Annual Data Report, Bethesda, MD, National Institutes of Health, 2004. Table D.5

^ Subgroup totals may not equal 8,634 due to missing data.

** For ages 20-49 years

Note: Percentages may not add up to 100% due to rounding.

For this Report, each patient's mean value for the three-month project period was determined from the available data for the following items: spKt/V (calculated using the Daugirdas II formula [26]), dialysis session length, dialyzer KUf, blood pump flow rates, hemoglobin, transferrin saturation, serum ferritin concentration, prescribed Epoetin or Darbepoetin dose and serum albumin. Information on prescription, route of iron administration as well as dose of intravenous (IV) iron was collected. Because we had data from a stratified random sample of patients (i.e., a separate random sample from each of the 18 Networks), it was necessary to weight the collected data in order to obtain unbiased estimates of mean clinical values for the total population. This weighting was done according to the proportion of each Network's total population sampled. Aggregate national results shown in this report were derived from weighted data; Network-specific comparisons were derived from unweighted data.

Adult Peritoneal Dialysis

The initial analysis focused on the adequacy of peritoneal dialysis CPMs, anemia management CPMs, and serum albumin values. Inclusion of a case for analysis required that the patient received peritoneal dialysis at least one month during the time period October 2003–March 2004. Of the 1,453 patients sampled, 1,377 patients were included in the sample for analysis (95% response rate) (TABLE 3). Selected patient character-

TABLE 3: Number of adult peritoneal dialysis patients in each Network in December 2003, sample size and response rate for the 2004 ESRD CPM Project.

	#			
Network	Peritoneal Dialysis	Sample	# Acceptable	Response
	Patients in	Size	Forms^	Rate %
	December 2003			
1	1,171	72	69	95.8
2	1,255	61	60	98.4
3	1,031	52	52	100.0
4	927	39	37	94.9
5	1,568	92	78	84.8
6	2,415	150	138	92.0
7	1,321	72	68	94.4
8	1,676	94	93	98.9
9	2,153	122	116	95.1
10	1,167	61	58	95.1
11	1,700	98	94	95.9
12	1,259	66	57	86.4
13	1,099	45	45	100.0
14	1,947	100	100	100.0
15	1,128	54	53	98.1
16	943	62	61	98.4
17	1,641	92	88	95.7
18	2,017	121	110	90.9
Total	26,418	1,453	1,377	94.8

^ A form was considered acceptable if the patient received peritoneal dialysis at least once during the six-month study period and met the selection criteria for inclusion in the study.

TABLE 4: Characteristics of adult peritoneal dialysis patients in the 2004 ESRD CPM Project compared to those of all peritoneal dialysis patients in the US in 2002.

Patient Characteristic	2004 CPM	Sample	All US in 2	2002*
	# ^	%	# in 1,000	<u>s %</u>
TOTAL	1,377	100	24.9	100
GENDER				
Men	709	51	12.8	51
Women	668	49	12.1	49
RACE American Indian/	15	1	0.3	1.2
Asian/Pacific Islando	r 80	1	1.3	1.2
Asiai/Pacific Islande	252	0	1.5	26
Black	333	20	0.4	26
white	880	64	16.4	66
Other/Unknown	49	4	0.5	2
ETHNICITY Hispanic	173	13	3.2	13
Non-Hispanic	1,189	86	21.7	87
Other/Unknown	15	1	0	0
AGE GROUP (years) 18-49	501	36	8.3**	33
50-59	330	24	5.6	22
60-64	142	10	2.6	10
65-69	143	10	2.6	10
70-79	206	15	3.8	15
80+	55	4	1.2	5
CAUSE of ESRD Diabetes mellitus	489	36	8.8	35
Hypertension	329	24	5.6	22
Glomerulonephritis	206	15	4.5	18
Other/Unknown	353	26	6.0	24
DURATION of DIALY <0.5	SIS (years) 181	13		
0.5-0.9	208	15		
1.0-1.9	335	24		
2.0+	201	15		
3.0-3.9	145	11		
4.0	303	22		

*USRDS: 2004 Annual Data Report, Bethesda, MD, National Institutes of Health, 2004. Table D.5

^ Subgroup totals may not equal 1,377 due to missing data.

** For ages 20-49 years Note: Percentages may not add up to 100% due to rounding. istics of this sample for analysis were similar to the characteristics of the overall U.S. peritoneal dialysis population (TABLE 4).

For this Report, each patient's mean value for the six-month study period was determined from available data for the following items: weekly Kt/V_{urea}, weekly creatinine clearance, hemo-globin, serum albumin, prescribed Epoetin or Darbepoetin dose, serum ferritin concentration, and transferrin saturation. Information on iron prescription and route of administration, as well as dose of IV iron was collected. The data are from a random sample, not stratified by Network; thus, only national aggregate data are reported. No Network-specific or facility-specific analyses were conducted.

Pediatric In-Center Hemodialysis Patients

Inclusion of a pediatric record for analysis required that data were available for at least one of the months in the three-month project period, with at least one paired pre- and post-dialysis BUN, at least one hemoglobin, and at least one serum albumin. Of the 809 pediatric patients, 678 patients were included in the sample for analysis (84% response rate). Selected patient characterstics of this sample for analysis are shown in Table 5.

For this Report, each patient's mean value for the three-month project period was determined from the available data for the following items: spKt/V, dialysis session length, dialyzer KUf, blood pump flow rates, hemoglobin, transferrin saturation, serum ferritin concentration, prescribed Epoetin dose and route of administration, and serum albumin. Information on iron prescription and route of iron administration, as well as dose of IV iron was collected. The data were collected on all pediatric patients aged < 18 years in the U.S. Only national aggregate data are reported. No Network-specific or facility-specific analyses were conducted.

D. REPORT FORMAT

This Report describes the clinical performance measures and other findings for both the adult in-center hemodialysis patient sample and the adult peritoneal dialysis patient sample in separate sections, V and VI, respectively, for the following study periods: October–December 2003 for the adult in-center hemodialysis patients, and October 2003–March 2004 for the adult peritoneal dialysis patients. This report also describes findings on clinical parameters of care for pediatric in-center hemodialysis patients in the U.S. for October-December 2003 in Section VII.

The national results are presented separately in tables by gender, race, ethnicity, age group (for adult patients: 18-44, 45-54, 55-64, 65-74, and 75+ years of age, for pediatric patients: 0-4, 5-9, 10-14, and 15 to < 18 years of age), diagnosis of ESRD, and duration of dialysis. The diagnoses are categorized as diabetes mellitus, hypertension, glomerulonephritis, and other/unknown for adult patients. In some instances clinical characteristics for patients in each Network area are also shown. Selected results are highlighted in figures. In addition, key findings from the 2004 CPM study period are compared to key findings from previous study periods. **TABLE 5:** Characteristics of pediatric (aged < 18 years) incenter hemodialysis patients in the 2004 ESRD CPM Project.

Patient Characteristic	2004 CP #^	M Project %	
TOTAL	678	100	
GENDER			
Males	384	57	
Females	294	43	
RACE			
American Indian/			
Alaska Native	*	*	
Asian/Pacific Islander	20	3	
Black	244	36	
White	357	53	
Other/Unknown	48	7	
ETHNICITY			
Hispanic	217	32	
Non-Hispanic	456	67	
Other/Unknown	5	1	
AGE GROUP (years)			
0-4	28	4	
5-9	63	9	
10-14	235	35	
15 to <18	352	52	
CAUSE of ESRD			
Congenital/Urologic	188	28	
Glomerulonephritis	96	14	
FSGS	91	13	
SLE	33	5	
Cystic Disease	24	4	
Hypertension	24	4	
Other/Unknown	222	33	
DURATION of DIALYS	(years)		
< 0.5	142	21	
0.5-0.9	133	20	
1.0-1.9	118	17	
2.0-2.9	75	11	
3.0-3.9	40	6	
4.0+	166	24	

^Subgroup totals may not equal 678 due to missing data.

*Data not displayed, n < 11.

Note: Percentages may not add up to 100% due to rounding.

A form was considered acceptable if the patient met the selection criteria for inclusion in the study and if data were provided for at least one of the months in the fourth quarter of 2003 for the following items: 1) hemoglobin; 2) paired preand post-dialysis BUN values; and 3) serum albumin value.

Two or more monthly values for these clinical measures were available for 93% of patients for hemoglobin and 92% for serum albumin by either BCG or BCP method. Monthly hemoglobin values were available for 85% of patients. At least one monthly paired pre- and post-dialysis BUN value was available for 100% of patients, and two or more were available for 91%. Monthly paired pre- and post-dialysis BUN values were available for 78% of patients.

III. CLINICAL PERFORMANCE MEASURES (CPMs)

The clinical information abstracted by facility staff is used in this Report to describe some of the CPMs that were developed from the NKF-DOQI Guidelines and other quality indicators for several aspects of care for adult dialysis patients. These CPMs do not apply to patients under the age of 18 years. The CPMs were developed in the areas of hemodialysis and peritoneal dialysis adequacy, vascular access and anemia management. A complete description of the 13 CPMs appears in Appendix 1.

The Hemodialysis Adequacy CPMs described in this report are:

CPM I. The patient's delivered dose of hemodialysis is measured at least once per month.

CPM II. The patient's delivered dose of hemodialysis reported in the patient's chart is calculated by using formal urea kinetic modeling (UKM) or the Daugirdas II formula for spKt/V.

CPM III. The patient's (for those patients on hemodialysis six months or longer and dialyzing three times per week) delivered dose calculated from data points on the data collection form (monthly measurement averaged over the three-month study period) of hemodialysis is $spKt/V \ge 1.2$.

The clinical information collected to calculate these adequacy CPMs also allows us to describe other aspects of dialysis adequacy (or indicators), such as the mean spKt/V values for hemodialysis patients in each Network area and in the US.

The Peritoneal Dialysis Adequacy CPMs described in this report are:

CPM I. The patient's total solute clearance for urea and creatinine is measured routinely (defined for this report as at least once during the six-month study period).

CPM II. The patient's total solute clearance for urea (weekly Kt/V_{urea}) and creatinine (weekly creatinine clearance) is calculated in a standard way. (See Peritoneal Dialysis Adequacy CPM II in Appendix 1).

CPM III. For patients on continuous ambulatory peritoneal dialysis (CAPD), the delivered peritoneal dialysis dose is a total Kt/V_{urea} of at least 2.0 per week and a total creatinine clearance (CrCl) of at least 60 L/week/1.73 m² OR evidence that the dialysis prescription was changed if the adequacy measurements were below these thresholds.

For CCPD patients (cycler patients with a daytime dwell), the weekly delivered peritoneal dialysis dose is a total Kt/V_{urea} of at least 2.1 and a weekly total creatinine clearance of at least 63L/week/1.73 m² OR evidence that the dialysis prescription was changed if the adequacy measurements were below these thresholds.

For NIPD patients (cycler patients without a daytime dwell), the weekly delivered peritoneal dialysis dose is a total Kt/V_{urea} of at least 2.2 and a weekly total creatinine clearance of at least 66 L/week/1.73 m² OR evidence that the dialysis prescription was changed if the adequacy measurements were below these thresholds.

The Vascular Access CPMs described in this Report are:

CPM I. A primary arteriovenous fistula (AVF) should be the access for at least 50% of all new patients initiating hemodialysis. A native AVF should be the primary access for 40% of prevalent patients undergoing hemodialysis.

CPM II. Less than 10% of chronic maintenance hemodialysis patients should be maintained on catheters continuously for \ge 90 days as their permanent chronic dialysis access.

CPM III. A patient's AV graft should be routinely monitored for stenosis. (See Vascular Access CPM III in Appendix 1 for a list of techniques and frequency of monitoring used to screen for the presence of stenosis).

The Anemia Management CPMs described in this report are:

CPM I. The target hemoglobin for patients prescribed Epoetin is 11- 12 g/dL (110-120 g/L). Patients with a mean hemoglobin > 12 g/dL (120 g/L) and not prescribed Epoetin were excluded from analysis for this CPM.

CPM IIa. For anemic patients (hemoglobin < 11 g/dL (110 g/L) in at least one study month) or patients prescribed Epoetin, the percent transferrin saturation and serum ferritin concentration are assessed (measured) at least once in a three-month period for hemodialysis patients and at least two times during the sixmonth study period for peritoneal dialysis patients.

CPM IIb. For anemic patients (hemoglobin < 11 g/dL (110 g/L) in at least one study month) or patients prescribed Epoetin, at least one serum ferritin concentration \geq 100 ng/mL and at least one transferrin saturation \geq 20% were documented during the three-month study period for hemodialysis patients or during the six-month study period for peritoneal dialysis patients.

CPM III. All anemic patients (hemoglobin < 11 g/dL (110 g/L) in at least one study month) or patients prescribed Epoetin, and with at least one transferrin saturation < 20% or at least one serum ferritin concentration < 100 ng/mL during the study period are prescribed IV iron; UNLESS the mean transferrin saturation was \geq 50% or the mean serum ferritin concentration was \geq 800 ng/mL; UNLESS the patient was in the first three months of dialysis and was prescribed oral iron.

The clinical information collected to calculate these CPMs allows us to describe other aspects of anemia management (or indicators). For example, the percents of patients with a mean hemoglobin \geq 11 g/dL (110 g/L) and < 10 g/dL (100 g/L) are

profiled in this Report. Additionally, the percents of all patients with mean transferrin saturation $\ge 20\%$, mean serum ferritin concentration ≥ 100 ng/mL, and the percents of patients prescribed subcutaneous (SC) Epoetin or IV iron are profiled.

Information was collected on Darbepoetin prescription and dose and on IV iron doses again during this data collection period. All monthly recorded data were used in determining the percent of patients prescribed Epoetin or Darbepoetin. A "held" dose of Epoetin was entered as "zero" units. A "held" dose of Darbepoetin was entered as "zero" micrograms. These zero values were included in the calculation of the mean weekly Epoetin or Darbepoetin doses. The average prescribed weekly Epoetin doses (units/kg/week) were stratified by hemoglobin values.

All monthly recorded data were used in determining the percent of patients prescribed any IV iron product. The average administered dose of IV iron (mg/month) was stratified by hemoglobin values.

The CPMs may have been calculated slightly differently than other findings reported in this Annual Report. Please refer to Appendix 1 for the specific inclusion and exclusion criteria for each CPM.

NOTE: Highlights of important findings from the 2004 ESRD CPM Project may be found on the following pages:

CPM highlights for adult hemodialysis patients, page 13

CPM highlights for adult peritoneal dialysis patients, page 14

Significant findings for adult in-center hemodialysis patients, page 18

Significant findings for adult peritoneal dialysis patients, page 19

Significant findings for pediatric in-center hemodialysis patients, page 20

These highlights are available on the Internet at <u>www.cms.hhs.gov/esrd/1.asp</u>.

Note Regarding Race

In this Report several tables describe important clinical characteristics of adult in-center hemodialysis and peritoneal dialysis patients for the following race groups: American Indian/Alaska Native, Asian/Pacific Islander, Black, White, and Other/Unknown. In the figures, these clinical characteristics are compared by race group; however, the comparisons are limited to White vs. Black. The reason for this is sample size. Because of small sample size (TABLE 2), the 95% confidence intervals for estimates for American Indian/Alaska Native, Asian/Pacific Islander, etc. race groups are very broad. On the other hand, the sample size for White and Black patients was large enough to provide stable estimates; i.e., the 95% confidence intervals are narrow.

CPM HIGHLIGHTS FROM THE NATIONAL 2004 ESRD PROJECT

Random Sample of Adult In-Center Hemodialysis (HD) Patients (n=8,634 sample for analysis) The data are from OCT-DEC 2003:

HD Adequacy

- 83% of patients had monthly adequacy measurements performed (HD Adequacy CPM I)
- 83% of patients had their delivered spKt/V calculated using either UKM or the Daugirdas II formula (26) (HD Adequacy CPM II)
- 94% of patients on dialysis for 6 months or more and dialyzing three times a week had a mean delivered adequacy dose of spKt/V ≥ 1.2 calculated using the Daugirdas II formula (HD Adequacy CPM III)

Vascular Access (VA)

- 35% of incident patients were dialyzed using an AV fistula (AVF) (VA CPM I) (FIGURE 30)
- 35% of prevalent patients were dialyzed using an AVF (VA CPM I) (FIGURES 2, 30)
- 20% of prevalent patients were dialyzed with a chronic catheter continuously for 90 days or longer (VA CPM II) (FIGURE 2)

¹See Appendix 1 for a description of the inclusion and exclusion criteria.

 77% of prevalent patients with an AV graft were routinely monitored for the presence of stenosis (VA CPM III)

Anemia Management (AM)

- 36% of targeted patients prescribed Epoetin had a mean hemoglobin 11.0-12.0 g/dL (110-120 g/L) (AM CPM I)
- 96% of patients who met the inclusion criteria¹ had at least one documented transferrin saturation value and one documented serum ferritin concentration value during the study period (AM CPM IIa)
- 81% of patients who met the inclusion criteria¹ had at least one transferrin saturation ≥ 20% and one serum ferritin concentration ≥ 100 ng/mL during the study period (AM CPM IIb)
- 79% of patients who met the inclusion criteria¹ were prescribed intravenous iron in at least one month during the study period (AM CPM III)

	Year					
ESRD CPM Trends (percent of patients meeting the CPMs) ¹	1998	1999	2000	2001	2002	2003
HD Adequacy						
HD Adequacy CPM I (monthly measurement of delivered HD dose)	79	76	80	82	83	83
HD Adequacy CPM II (method of measurement of delivered HD dose)	99	50	52	68	67	83
HD Adequacy CPM III (mean delivered HD dose ≥ 1.2)	85	90	91	92	92	94
Vascular Access						
Vascular Access CPM Ia (incident patients with an AVF ² as access)	26	28	27	29	27	35
Vascular Access CPM Ib (prevalent patients with an AVF as access)	26	27	30	31	33	35
Vascular Access CPM II (dialyzed with a chronic catheter ³)	14	14	17	19	21	20
Vascular Access CPM III (AV graft was routinely monitored for stenosis)	37	45	47	51	61	77
Anemia Management						
Anemia CPM I (mean Hgb 11-12 g/dL)	36	36	38	38	36	36
Anemia CPM IIa	90	89	91	92	94	96
(iron stores assessed for anemic patients or patients prescribed Epoetin)						
Anemia CPM IIb (iron stores maintained at K/DOQI targets)	67	66	71	75	78	81
Anemia CPM III (administration of IV iron to anemic patients)	63	67	73	77	79	79
¹ See Appendix 1 for a description of the inclusion and exclusion criteria.						

³ for 90 days or longer

NOTE: Please note that when a single year such as 2003 is used in displaying data, it refers to October, November, and December of that year for the hemodialysis patients.

CPM HIGHLIGHTS FROM THE NATIONAL 2004 ESRD PROJECT

Random Sample of Adult Peritoneal Dialysis (PD) Patients (n=1,377 sample for analysis) The data are from OCT 2003–MAR 2004:

PD Adequacy

- 86% of patients had at least one measured total solute clearance for urea and creatinine (PD Adequacy CPM I) during the six-month study period (FIGURE 3)
- 44% of patients had their total solute clearance for urea and creatinine calculated in a standard way1 (PD Adequacy CPM II) (FIGURE 3)
- 70% of CAPD patients had a mean weekly Kt/Vura of \geq 2.0 and a mean weekly creatinine clearance \geq 60L/week/ 1.73m² OR there was evidence the dialysis prescription was changed if the adequacy measurements were below these thresholds during the six-month study period (PD Adequacy CPM III) (FIGURES 4, 52)
- 65% of Cycler patients with a daytime dwell had a mean weekly Kt/V_{urea} of \geq 2.1 and a mean weekly creatinine clearance \geq 63 L/week/1.73m²OR there was evidence the dialysis prescription was changed if the adequacy measurements were below these thresholds during the six-month study period (PD Adequacy CPM III) (FIGURES 4, 52)
- 62% of Cycler patients without a daytime dwell had a mean Kt/V_{urea} of \geq 2.2 and a mean weekly creatinine clearance

\geq 66 L/week/1.73m² OR there was evidence the dialysis prescription was changed if the adequacy measurements were below these thresholds during the six-month study period (PD Adequacy CPM III) (FIGURES 4, 52)

Anemia Management (AM)

- 39% of targeted patients prescribed Epoetin had a mean hemoglobin between 11.0-12.0 g/dL (110-120 g/L) (AM CPM I)
- 79% of patients who met the inclusion criteria² for this CPM had at least two documented transferrin saturation values and two documented serum ferritin concentration values during the six-month study period (AM CPM IIa)
- 83% of patients who met the inclusion criteria² for this CPM had at least one transferrin saturation \geq 20% and one serum ferritin concentration \geq 100 ng/mL during the sixmonth study period (AM CPM IIb)
- 29% of patients who met the inclusion criteria² for this CPM were prescribed intravenous iron in at least one of the two-month periods during the six-month study period (AM CPM III)

¹ See Appendix 1 for a description of standard ways for calculating total solute clearance. ² See Appendix 1 for a description of the inclusion and exclusion criteria.

Using the 1997 NKF-DOQI guidelines (14):

For CAPD patients: weekly Kt/V $_{\rm urea} \ge 2.0;$ weekly CrCl ≥ 60 L/week/1.73m²

For cycler patients with daytime dwell (CCPD patients): weekly Kt/V_{urea} \ge 2.1; weekly CrCl \ge 63 L/week/1.73m² For nighttime cycler patients (NIPD patients) (no daytime dwell): weekly Kt/V_{urea} \ge 2.2; weekly CrCl \ge 66 L/week/1.73m²

	Year					
ESRD CPM Trends (percent of patients meeting the CPMs) ¹	1999	2000	2001	2002	2003	2004
PD Adequacy						
PD Adequacy CPM 1 (measurement of total solute clearance at regular intervals)	82	83	85	86	88	86
PD Adequacy CPM II (weekly Kt/Vurea & weekly CrCl calculated in a standard way) ²	55	59	62	62	65	44
PD Adequacy CPM III (delivered PD dose meets K/DOQI thresholds) CAPD	55	68	69	68	71	70
Cycler with daytime dwell	58	65	62	70	66	65
Cycler without daytime dwell	45	66	64	61	67	62
Anemia Management						
Anemia CPM I (mean Hgb 11-12 g/dL)	32	34	39	36	39	39
Anemia CPM IIa (iron stores assessed for anemic patients or patients prescribed Epoetin)	70	68	72	74	77	79
Anemia CPM IIb (iron stores maintained at K/DOQI targets)	72	70	75	76	81	83
Anemia CPM III (administration of IV iron to anemic patients)	17	18	23	31	32	29
¹ See Appendix 1 for a description of the inclusion and exclusion criteria.						

² See Appendix 1 for a description of standard ways for calculating total solute clearance.

NOTE: When a single year, such as 2004, is used for the peritoneal dialysis patients, it refers to January, February, and March of that year as well as October, November, and December of the previous year.

IV. OTHER SIGNIFICANT FINDINGS AND TRENDS

ESRD CPM Data Trends

The figures on the following pages show the trends in the ESRD CPM data for various study periods.

Please note that when a single year such as 2003 is used in displaying data, it refers to October, November, and December of that year for the hemodialysis patients. When a single year, such as 2004, is used for the peritoneal dialysis patients, it refers to January, February, and March of that year as well as October, November, and December of the previous year. Also, "adult" refers to ages \geq 18 years and "pediatric" refers to ages < 18 years.

Vascular Access Trends

Figure 2: Vascular access type for all adult in-center hemodialysis patients on their last hemodialysis session during the study period. 2004 ESRD CPM Project.

 * Chronic catheter defined as use of a catheter access continuously for 90 days or longer.

Peritoneal Dialysis Adequacy Trends

Figure 4: Percent of adult peritoneal dialysis patients meeting 1997 NKF-DOQI guidelines for weekly Kt/V_{urea} and weekly creatinine clearance (PD Adequacy CPM III). 2004 ESRD CPM Project.

Peritoneal Dialysis Adequacy Trends

Figure 3: Percent of adult peritoneal dialysis patients with total solute clearance for urea and creatinine measured at least once during the study period (PD Adequacy CPM I) and with total solute clearance calculated in a standard way* (PD Adequacy CPM II), October 2003-March 2004 compared to previous study periods. 2004 ESRD CPM Project.

*See Appendix 1 for a complete description of the standard methods to calculate the solute clearance for urea and creatinine.

Hemodialysis Adequacy Trends

Figure 5: Percent of adult in-center hemodialysis patients with mean delivered calculated, single session single pool (sp)Kt/V \geq 1.2 in October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

Anemia Management Trends

Figure 6: Percent of adult in-center hemodialysis patients with mean hemoglobin ≥ 11 g/dL, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Figure 7: Distribution of mean hemoglobin values for adult incenter hemodialysis patients, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Figure 8: Percent of adult peritoneal dialysis patients with mean hemoglobin ≥ 11 g/dL, October 2003-March 2004 compared to previous study periods. 2004 ESRD CPM Project.

Figure 9: Distribution of mean hemoglobin values for adult peritoneal dialysis patients, October 2003-March 2004 compared to previous study periods. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

by 10.

Pediatric Dialysis Trends

Figure 10: Distribution of mean delivered calculated, single session spKt/V values for pediatric (aged < 18 years) in-center hemodialysis patients, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

Figure 12: Distribution of mean hemoglobin values for pediatric (aged < 18 years) in-center hemodialysis patients, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

SIGNIFICANT FINDINGS FROM THE NATIONAL 2004 ESRD CPM PROJECT

Random Sample of Adult In-Center Hemodialysis (HD) Patients (n=8,634 sample for analysis) The data are from OCT-DEC 2003:

HD Adequacy

- 91% of prevalent patients had a mean delivered calculated, single session adequacy dose of spKt/V ≥ 1.2 (FIGURE 5)
- 94% of female patients and 88% of male patients were receiving dialysis with a mean delivered calculated, single session spKt/V \geq 1.2 in OCT-DEC 2003 (TABLE 6)
- Mean (± SD) spKt/V was 1.53 (± 0.26)
- 87% of patients had a mean URR \ge 65%
- Mean (± SD) URR was 72.0 (± 6.8)%
- Mean (\pm SD) dialysis session length was 216 (\pm 30) minutes (FIGURE 20)

Opportunity to Improve Adequacy

• 9% of patients did not have a mean spKt/V ≥1.2 during the three-month study period

Vascular Access

- 35% of incident and 35% of prevalent patients were dialyzed with an AVF during their last hemodialysis session OCT-DEC 2003 (TABLE 8)
- 75% of patients with an AVF or AV graft had their access routinely monitored for the presence of stenosis during the three-month study period

Opportunities to Improve Vascular Access

- 65% of incident patients and 65% of all patients were not dialyzed with an AVF during their last hemodialysis session OCT-DEC 2003
- 23% of patients with an AV graft did not have this graft routinely monitored for the presence of stenosis during the three-month study period

Anemia Management (AM)

- 80% of patients had a mean hemoglobin ≥ 11 g/dL (110 g/L) in the last quarter of 2003 (FIGURE 6)
- 6% of patients had a mean hemoglobin < 10.0 g/dL (100 g/L) (FIGURE 32, TABLE 12)

- Mean (± SD) hemoglobin was 11.9 (± 1.2) g/dL (119 [± 12] g/L) (FIGURES 7, 32, TABLE 12)
- Mean (± SD) weekly IV and SC Epoetin dose was 271.3 (± 251.8) units/kg/week and 206.2(± 184.8) units/kg/week respectively (FIGURE 39)
- 81% of patients had a mean transferrin saturation ≥ 20% (FIGURE 40, TABLE 14)
- 94% of patients had a mean serum ferritin concentration ≥ 100 ng/mL (FIGURE 40, TABLE 14)
- 25% of patients had a mean serum ferritin > 800 ng/mL (FIGURE 40, TABLE 14)
- 65% of patients were prescribed IV iron during the study period (TABLE 14)
- Mean (± SD) IV iron dose was 233.4 (± 194.4) mg/month (FIGURE 37)

Opportunities to Improve Anemia Management

- 20% of patients did not have a mean hemoglobin ≥11 g/dL (110 g/L) during the three-month study period
- 19% of patients did not have a mean transferrin saturation ≥ 20% and 6% of patients did not have a mean serum ferritin ≥ 100 ng/mL
- 35% of patients were not prescribed IV iron during the study period

Serum Albumin

- 39% of patients had a mean serum albumin ≥ 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP)¹ (FIGURE 44, TABLE 15)
- 81% of patients had a mean serum albumin ≥ 3.5/3.2 g/dL (35/32 g/L) (BCG/BCP) (FIGURE 44, TABLE 15)
- Mean (± SD) serum albumin was 3.8 (± 0.4)/3.5 (± 0.5) g/dL (38[±4]/35[±5] g/L) (BCG/BCP)

Opportunity to Improve Serum Albumin

 61% of patients did not have a mean serum albumin ≥ 4.0/3.7g/dL (40/37 g/L) (BCG/BCP) during the threemonth study period

¹ BCG = bromcresol green, BCP = bromcresol purple; these are two different laboratory methods for assaying serum albumin.

SIGNIFICANT FINDINGS FROM THE NATIONAL 2004 ESRD PROJECT

Random Sample of Adult Peritoneal Dialysis (PD) Patients (n=1,377 sample for analysis) The data are from OCT 2003–MAR 2004:

PD Adequacy

- Mean weekly Kt/V_{urea} for CAPD patients was 2.28 (\pm 0.64)
- Mean weekly Kt/V $_{\rm urea}$ for Cycler patients with a daytime dwell was 2.29 (± 0.60) (TABLE 18)
- Mean weekly Kt/V urea for cycler patients without a day-time dwell was 2.39 (\pm 0.73) (TABLE 18)

Opportunities to Improve Adequacy

- The adequacy of dialysis was not assessed during the 2003 study period for 14% of the sampled peritoneal dialysis patients
- 33% of CAPD patients did not achieve an adequate weekly Kt/V_{urea} and 34% did not achieve an adequate weekly CrCI. Likewise, 41% of cycler patients with a daytime dwell did not achieve an adequate weekly Kt/V_{urea} and 52% did not achieve an adequate weekly CrCI (TABLE 18)

Anemia Management (AM)

- 82% of patients had a mean hemoglobin ≥ 11 g/dL (FIGURES 8, 54)
- 85% of patients had a mean transferrin saturation ≥ 20% (FIGURE 56)
- 88% of patients had a mean serum ferritin concentration ≥ 100 ng/mL (FIGURE 56)
- Mean (± SD) hemoglobin was 12.0 (± 1.3) g/dL (120 [± 13] g/L) (FIGURES 9, 53, TABLE 19)

- The mean (± SD) SC and IV Epoetin doses were 155.7 (± 163.7) and 177.5 (± 150.1) units/kg/week, respectively (FIGURE 55)
- 15% of patients had a mean serum ferritin > 800 ng/mL (FIGURE 56)

Opportunities to Improve Anemia Management

- 18% of patients did not have a mean hemoglobin ≥ 11 g/dL (110 g/L) in the 2003 study period
- 15% of patients did not have a mean transferrin saturation ≥ 20% and 12% of patients did not have a mean serum ferritin ≥ 100 ng/mL

Serum Albumin

- 20% of patients had a mean serum albumin ≥ 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP)¹ (FIGURE 57, TABLE 20)
- 63% of patients had a mean serum albumin ≥ 3.5/3.2 g/dL (35/32 g/L) (BCG/BCP) (FIGURE 57, TABLE 20)
- Mean (± SD) serum albumin was 3.6 (±0.5)/3.3 (± 0.5) g/dL (36 [± 5]/33 [± 5] g/L) (BCG/BCP)

Opportunities to Improve Serum Albumin

- 80% of PD patients did not have mean serum albumin ≥ 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP) during the sixmonth study period
- 37% of PD patients did not have mean serum albumin ≥ 3.5/3.2 g/dL (35/32 g/L) (BCG/BCP) during the sixmonth study period

¹BCG = bromcresol green, BCP = bromcresol purple; these are two different laboratory methods for assaying serum albumin.

Using the 1997 NKF-DOQI guidelines (14): For CAPD patients: weekly Kt/V $_{\rm urea} \geq$ 2.0; weekly CrCl \geq 60 L/week/1.73m²

For cycler patients with daytime dwell (CCPD patients): weekly Kt/V_{urea} \geq 2.1; weekly CrCl \geq 63 L/week/1.73m²

```
For nighttime cycler patients (NIPD patients) (no daytime dwell): weekly Kt/V_{urea} \ge 2.2; weekly CrCl \ge 66 L/week/1.73m^2
```

SIGNIFICANT FINDINGS FROM THE NATIONAL 2004 ESRD PROJECT

100% Sample Pediatric In-Center Hemodialysis Patients (HD) (aged < 18) (n=678 sample for analysis) The data are from OCT–DEC 2003:

Clearance

- 86% of patients had a mean delivered calculated, single session adequacy dose of spKt/V ≥ 1.2 calculated using the Daugirdas II formula (26) (TABLE 21)
- Mean (± SD) spKt/V was 1.55 (± 0.32) (FIGURES 10, 58)
- Mean (\pm SD) dialysis session length was 204 (\pm 31) minutes

Opportunity to Improve Clearance

• 14% of patients did not have a mean spKt/V \ge 1.2 during the three-month study period

Vascular Access

- 27% of patients were dialyzed using an AV fistula (AVF) (FIGURE 11, TABLE 22)
- 47% of patients were dialyzed with a chronic catheter continuously for 90 days or longer (FIGURE 11)
- 52% of patients with an AVF or an AV graft were routinely monitored for the presence of stenosis

Opportunitiy to Improve Vascular Access

• 48% of patients with an AVF or AV graft did not have this access routinely monitored for the presence of stenosis during the three-month study period

Anemia Management

 67% of patients had a mean hemoglobin ≥ 11 g/dL (110 g/L) (FIGURE 67)

- Mean (± SD) hemoglobin was 11.4 (± 1.6) g/dL (114 [± 16]) g/L (FIGURES 12, 66, TABLE 24)
- Mean (± SD) weekly IV Epoetin dose was 368.6 (±353.6) units/kg/week
- 73% of patients had a mean transferrin saturation ≥ 20%
- 78% of patients had a mean serum ferritin concentration ≥ 100 ng/mL
- 13% of patients had a mean serum ferritin > 800 ng/mL

Opportunity to Improve Anemia Management

 33% of patients did not have a mean hemoglobin ≥ 11 g/dL (110 g/L) during the three-month study period

Serum Albumin

- 48% of patients had a mean serum albumin ≥ 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP)¹ (FIGURE 75, TABLE 25)
- 81% of patients had a mean serum albumin ≥ 3.5/3.2 g/dL (35/32 g/L) (BCG/BCP) (FIGURE 75, TABLE 25)
- Mean (± SD) serum albumin was 3.9(± 0.5)/3.6(± 0.4) g/dL (39 [± 5]/36 [± 4] g/L) (BCG/BCP)

Opportunity to Improve Serum Albumin

 52% of patients did not have a mean serum albumin ≥ 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP) during the threemonth study period

¹ BCG = bromcresol green, BCP = bromcresol purple; these are two different laboratory methods for assaying serum albumin.

IMPORTANT NOTE

The data in this Report are intended to stimulate the development of quality improvement (QI) projects in dialysis facilities. The data collected for this project were necessarily limited: not all dialytic parameters that influence patient care for these clinical measures were collected. In addition, the project did not attempt to develop facility-specific profiles of care.

As you review this Report, ask yourself questions about how your patients' clinical characteristics compare to these national hemodialysis and peritoneal dialysis patient profiles and Network hemodialysis patient profiles. Additional information must be collected at your facility if you wish to answer these questions and develop ways to improve patient care for your patients. Your ESRD Network staff and Medical Review Board members are available to assist you in using these data in your QI activities and in developing facility-specific QI projects.

V. ADULT IN-CENTER HEMODIALYSIS PATIENTS

This section describes the findings for the sampled adult incenter hemodialysis patients for selected CPMs and other quality indicators related to adequacy of dialysis, vascular access, anemia management and serum albumin. Each of these subsections is further broken down into three parts:

(1) national findings for selected CPMs for October–December 2003 (the serum albumin information is not considered a CPM for this report);

(2) a description of other quality indicators or data analyses for October-December 2003; and

(3) a comparison of CPM and/or other quality indicators results or findings for October–December 2003 and previous study periods.

A national random sample of adult (\geq 18 years) in-center hemodialysis patients, stratified by Network, who were alive on December 31, 2003, was selected (n=8,881). 8,634 patients (97%) were included in the sample for analysis.

A. ADEQUACY OF HEMODIALYSIS

1. CPM Findings for October–December 2003

Data to assess three hemodialysis adequacy CPMs were collected in 2004. The time period from which these data were abstracted was October–December 2003. The results for these CPMs are included in this section of the report (Hemodialysis Adequacy CPMs I–III).

Hemodialysis Adequacy CPM I — The patient's delivered dose of hemodialysis is measured at least once per month.

FINDING: 83% of adult in-center hemodialysis patients in the sample for analysis had documented measurements of hemodialysis adequacy (URR and/or spKt/V) for each month during the three-month study period (October–December 2003). These measurements were recorded in the patient's chart, not calculated from individual data points. An additional 12% of the patients in the sample for analysis had documented adequacy measurements for two out of the three months, and another five percent of the patients had documented adequacy measurements for one of the three months.

Hemodialysis Adequacy CPM II — The patient's delivered dose of hemodialysis recorded in the patient's chart is calculated by using formal urea kinetic modeling (UKM) or the Daugirdas II formula (for spKt/V) (26).

<u>FINDING:</u> 83% of adult in-center hemodialysis patients in the sample for analysis had delivered hemodialysis doses reported as spKt/V calculated using formal UKM or the Daugirdas II formula.

Hemodialysis Adequacy CPM III — The patient's delivered dose of hemodialysis calculated from data points on the data collection form (monthly measurement averaged over the three-month study period) is spKt/V \geq 1.2 using the Daugirdas II for-

mula (26). This CPM is calculated on the subset of patients who had been on hemodialysis for six months or longer and who were dialyzing three times per week (n=6,536).

<u>FINDING</u>: For the last quarter of 2003, 94% of the adult incenter hemodialysis patients who met the inclusion criteria (only those patients who had been on hemodialysis for six months or longer and who were dialyzing three times per week [n=6,536]) had a mean delivered calculated, single session (hereafter referred to as delivered) hemodialysis dose of spKt/V \ge 1.2.

2. Other Hemodialysis Adequacy Findings for October-December 2003

NOTE: The following findings apply to all adult in-center hemodialysis patients in the sample for analysis regardless of when they first initiated dialysis. Only 0.5% (n=44) of patients were dialyzed more than three times per week over the study period; these patients were included in the following hemodialysis adequacy findings.

The mean (± SD) delivered calculated spKt/V of all adult incenter hemodialysis patients in the sample for analysis in the last quarter of 2003 was 1.53 (± 0.26). The distribution of spKt/V values for these patients is shown in Figure 13. The mean (± SD) delivered calculated URR for this sample was 72.0 (± 6.8)%. 87% of patients had a mean delivered URR \ge 65%. The mean delivered spKt/V and the percent of patients with mean delivered spKt/V \ge 1.2 and spKt/V \ge 1.3 for gender, race, ethnicity, age, diagnosis, duration of dialysis, quintile of post-dialysis body weight, access type, and selected clinical parameters are shown in Table 6.

The percent of patients in the sample for analysis with at least one calculated spKt/V measure available (n=8,514) who received adequate hemodialysis, defined as a mean delivered spKt/V \geq 1.2, approximately equivalent to URR \geq 65% (2) in the last quarter of 2003 was 91% (TABLE 6, FIGURE 5).

The percent of patients receiving hemodialysis with a mean delivered spKt/V \ge 1.2 was higher for women than for men, higher for Whites, Native Americans/Alaska Natives, and Asians/Pacific Islanders than for Blacks, higher for Hispanics compared to non Hispanics, higher for patients dialyzing six months or longer than for patients dialyzing less than six months, higher for patients in lower quintiles of body weight, and higher for patients \ge 65 years of age than for younger patients (TABLE 6).

A higher percent of patients with mean hemoglobin \geq 11 g/dL (110 g/L) and mean serum albumin \geq 3.5/3.2 g/dL (35/32 g/L) (BCG/BCP) had a mean spKt/V \geq 1.2 compared to patients with lower mean hemoglobin and serum albumin values. A higher percent of patients dialyzed with an AV fistula or an AV graft had a mean delivered spKt/V \geq 1.2 compared to patients dialyzed with a catheter (93% and 95% vs. 82% respectively) (TABLE 6).

Figure 13: Distribution of mean delivered calculated, single session spKt/V values for adult in-center hemodialysis patients, October–December 2003. 2004 ESRD CPM Project.

The mean (\pm SD) dialysis session length was 216 (\pm 30) minutes. The mean dialysis session length was somewhat longer for men than for women (224 minutes vs. 208 minutes), for Blacks than for Whites (222 minutes vs. 214 minutes), and for patients dialyzing six months or longer compared to patients dialyzing less than six months (217 minutes vs. 213 minutes). Patients in the highest quintile of post-dialysis body weight (kg) had longer dialysis session lengths compared to patients in the lowest quintile (237 minutes vs. 198 minutes). The mean dialysis session length was 219 minutes for patients dialyzed with an AVF, 214 minutes for patients with either a synthetic or bovine graft, and 216 minutes for patients with a catheter access during October-December 2003.

The mean (\pm SD) delivered blood pump flow rate 60 minutes into the dialysis session was 406 (\pm 59) mL/min for patients with an AVF, 417 (\pm 58) mL/min for patients with either a synthetic or bovine graft, and 350 (\pm 55) mL/min for patients with a catheter access during October -December 2003 (FIGURE 14). Actual blood flow delivered to the dialyzer may be lower than the prescribed blood pump flow (27). The difference between prescribed and actual blood flow to the dialyzer increases with more negative pre-pump pressures. This is particularly true for catheters where differences of 25% or more may exist between delivered and prescribed blood flow to the dialyzer at prescribed blood pump flow rates of 400 mL/min or more (28). **TABLE 6:** Mean delivered calculated, single session spKt/V and percent of adult in-center hemodialysis patients with mean delivered calculated, single session spKt/V \ge 1.2 and \ge 1.3 by patient characteristics, October-December 2003. 2004 ESRD CPM Project.

ratient Characteristics M	ean spĸu v	$SPKUV \ge 1.2\%$	$SpKUV \ge 1.3\%$
TOTAL	1.53	91	83
GENDER			
Men	1.47	88	78
Women	1.61	94	88
RACE			
American Indian/			
Alaska Native	1.56	91	85
Asian/Pacific Islander	1.65	96	92
Black	1.50	90	80
White	1.55	91	84
Other/Unknown	1.55	88	82
ETHNICITY			
Hispanic	1.59	94	87
Non-Hispanic	1.53	90	82
AGE GROUP (years)			
18-44	1.50	87	78
45-54	1.49	88	79
55-64	1.51	90	81
65-74	1.56	93	87
75+	1.59	94	88
CAUSE of ESRD			
Diabetes mellitus	1.51	90	81
Hypertension	1.55	92	84
Glomerulonephritis	1.54	91	82
Other/Unknown	1.56	91	84
DURATION of DIALYSIS	(years)		
< 0.5	1.40	75	63
0.5-0.9	1.47	86	73
1.0-1.9	1.54	93	85
2.0-2.9	1.56	94	87
3.0-3.9	1.57	95	91
4.0+	1.58	95	89
QUINTILE POST-DIALYS	SIS BODY V	WEIGHT (kg)	
32.0-58.9	1.71	97	94
59.0-68.4	1.59	95	89
68.5-77.9	1.53	92	85
78.0-91.6	1.47	89	79
91.7-209.3	1.39	81	67
ACCESS TYPE			
AV Fistula	1.54	93	85
AV Graft	1.59	95	90
Catheter	1.45	82	70
MEAN Høb (ø/dL)			
≥11	1.55	92	84
< 11	1.49	86	77
MEAN SERIM AI RIMIN	J (g/dI)		
$\geq 3.5/3.2 \text{ BCG/BCP*}$	1.54	92	84
< 35/32 BCG/BCP	1.50	86	76

* BCG/BCP = bromcresol green/bromcresol purple laboratory methods Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10. Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10. *Figure 14:* Distribution of mean delivered blood pump flow rates 60 minutes into the dialysis session for adult in-center hemodialysis patients, by access type, October–December 2003. 2004 ESRD CPM Project.

Note: Actual blood flow delivered to the dialyzer may be lower than the prescribed blood pump flow (27). This is particularly true for catheters where differences of 25% or more may exist between delivered and prescribed blood flow to the dialyzer at prescribed blood pump flow rates of 400 mL/min or more (28).

*Value suppressed because $n \leq 10$.

The percent of patients who received adequate hemodialysis varied significantly from one geographic region to another. Table 7 shows, by gender, race, and ethnicity, the percent of patients who received hemodialysis with a mean delivered spKt/V \ge 1.2 in each Network area. The percent of all patients with mean delivered spKt/V \ge 1.2 ranged from 87% to 96% among the 18 Networks (FIGURES 15, 16).

Figure 16: Percent of adult in-center hemodialysis patients receiving dialysis with a mean delivered, single session $spKt/V \ge 1.2$, by Network, October–December 2003. 2004 ESRD CPM Project.

3. CPM and other Findings for October-December 2003 compared to previous study periods

Note: The following findings apply to all adult in-center hemodialysis patients in the sample for analysis regardless of when they first initiated dialysis.

The mean (\pm SD) delivered spKt/V in October-December 2003 was 1.53 (\pm 0.26), an increase from previous study years. The percent of patients receiving dialysis with a mean delivered spKt/V \geq 1.2 increased significantly from 86% in late 2000 to 91% in late 2003 (FIGURE 5, TABLE 6). This significant improvement occurred for both men and women and for White and Black patients (FIGURES 17, 18).

Figure 17: Percent of adult male in-center hemodialysis patients with mean delivered, single session $spKt/V \ge 1.2$, by race, October–December 2003 compared to previous study periods. 2004 ESRD CPM Project.

PATIENT CHARACTERISTIC								Z	ETW	ORK									
	-	7	e	4	S	9	2	×	6	10	11	12	13	14	15	16	17	18	ns
ALL	93	88	91	93	90	93	06	89	91	90	88	06	88	96	91	92	87	91	91
GENDER																			
Men	91	85	89	91	89	06	84	86	88	86	85	85	82	93	89	89	84	88	88
Women	95	92	94	94	91	95	76	93	95	94	91	94	93	66	94	95	91	95	94
RACE																			
Black	95	89	92	90	86	93	91	06	89	88	86	93	86	94	85	89	84	91	90
White	92	88	91	94	76	93	89	87	93	06	89	88	89	76	91	92	84	06	91
ETHNICITY																			
Hispanic	91	93	88	100	*	*	95	*	*	94	100	93	*	76	95	88	93	92	94
Non-Hispanic	93	88	92	93	90	93	89	89	92	89	87	89	87	95	06	92	85	06	90
Note: A delivered spKt/V of .* * Value suppressed because	1.2 do€ n ≤ 10	es not ne	ecessari	ly correl:	ate with	a delive	ered UR	LR of 65	%.										

Figure 18: Percent of adult female in-center hemodialysis patients with mean delivered, single session $spKt/V \ge 1.2$, by race, October–December 2003 compared to previous study periods. 2004 ESRD CPM Project.

Figure 19 shows the percent of adult in-center hemodialysis patients dialyzed by dialyzer KUf category October–December 2003, compared to previous study years. The percent of patients dialyzed with a dialyzer with a KUf \geq 20 mL/mmHg/hr increased from approximately 30% in late 1993 to approximately 89% in late 2003.

Figure 19: Percent of adult in-center hemodialysis patients dialyzed by dialyzer KUf category, October–December 2003 compared to previous study periods. 2004 ESRD CPM Project.

*Sixteen Network areas participated in the first ESRD Core Indicators Project assessment (October–December 1993); all Network areas participated in subsequent years.

Figure 20 shows a trend for slight increases in dialysis session lengths from late 1993 to late 2003.

Figure 20: Distribution of mean dialysis session length (minutes), October–December 2003 compared to previous study periods. 2004 ESRD CPM Project.

**Sixteen Network areas participated in the first ESRD Core Indicators Project assessment (October–December 1993); all Network areas participated in subsequent years. *Value suppressed because $n \le 10$.

B. VASCULAR ACCESS

1. CPM Findings for October-December 2003

Data to assess three vascular access CPMs were collected in 2004. The time period from which these data were abstracted was October–December 2003. Results for these CPMs are included in this report.

Vascular Access CPM I — A primary arteriovenous fistula (AVF) should be the access for at least 50% of all new patients initiating hemodialysis. A native AVF should be the primary access for 40% of all prevalent patients undergoing hemodialysis.

<u>FINDING:</u> 35% of incident patients (initiating their most recent course of hemodialysis, on or between January 1, 2003 and August 31, 2003, [n = 1,360]) were dialyzed using an AVF on their last hemodialysis session during October–December 2003 (TABLE 8).

35% of all patients in the sample for analysis were dialyzed using an AVF during their last hemodialysis session October– December 2003 (TABLE 8).

Vascular Access CPM II — Less than 10% of chronic maintenance hemodialysis patients should be maintained on catheters (continuously for 90 days or longer) as their permanent chronic dialysis access.

<u>FINDING</u>: 20% of all patients in the sample for analysis were dialyzed with a chronic catheter continuously for 90 days or longer during October–December 2003 (FIGURE 21).

Vascular Access CPM III — A patient's AV graft should be routinely monitored for stenosis. (See Vascular Access CPM III in Appendix 1 for a list of techniques and frequency of monitoring used to screen for the presence of stenosis).

<u>FINDING</u>: 77% of patients with an AV graft (n=3,099) had this graft routinely monitored for the presence of stenosis during October–December 2003.

TABLE 8: Vascular access type for incident[^] and all adult incenter hemodialysis patients during the last hemodialysis session of the study period, by selected patient characteristics, October-December 2003. 2004 ESRD CPM Project.

	Inci	dent (1	n=1,360)	Pre	valent	(n=8,634)
Patient Characteristic	AVF %	Graft %	Catheter %	AVF %	Graft %	Catheter %
TOTAL	35	26	40	35	38	27
GENDER						
Men	43	20	37	44	32	24
Women	24	33	43	25	45	30
RACE						
American Indian/						
Alaska Native	71	*	*	52	30	18
$\Delta sian/Pacific$	/1			52	50	10
Islander	52	*	*	17	37	16
Black	28	31	12	$\frac{47}{20}$	45	26
White	20	24	30	29	31	20
Other/Unknown	22	24	12	12	20	20
Other/Offkhowh	33	24	43	42	50	20
ETHNICITY						
Hispanic	44	28	28	38	39	23
Non-Hispanic	33	25	42	35	38	27
AGE GROUP						
(vears)						
18-44	48	17	35	46	30	24
15-54	30	23	30	30	37	24
55 64	3/	25	41	31	30	24
65 7 <i>1</i>	33	2.5	36	37	12	27
75	27	27	15	30	38	20
75-	21	21	45	50	50	52
CAUSE of ESRD						
Diabetes Mellitus	34	27	39	32	41	27
Hypertension	35	28	38	35	39	26
Glomerulonephritis	54	21	25	43	35	21
Other/Unknown	31	20	48	40	30	30
DUDATION -f						
DURATION OF						
DIALYSIS (years)	21	10	51			(2)
< 0.5	31	18	51	$\begin{vmatrix} 21 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 $		62
0.5-0.9	36	28	36	36	28	35
1.0-1.9	N/A	N/A	N/A	39	37	23
2.0-2.9	N/A	N/A	N/A	40	42	19
3.0-3.9	N/A	N/A	N/A	36	45	19
4.0+	N/A	N/A	N/A	36	46	18

[^]An incident patient is defined as a patient initiating in-center hemodialysis on or between January 1, 2003 and August 31, 2003.

Note: Percentages may not add up to 100% due to rounding.

*Value suppressed because $n \le 10$.

2. Other Vascular Access Findings for October-December 2003

Among prevalent patients, males, Whites, Hispanics, patients 18-44 years old, patients with causes of ESRD other than dia-

Figure 21: Percent of all adult in-center hemodialysis patients dialyzed with a catheter continuously for 90 days or longer as their vascular access on their last hemodialysis session during October-December 2003, by patient characteristics. 2004 ESRD CPM Project.

Post-dialysis BMI quartiles: 1) < 22.2, 2) 22.2-25.7, 3) 25.8-30.5, 4) >30.5

betes mellitus, and patients dialyzing six months or longer were more likely to be dialyzed with an AVF compared to women, Blacks, non-Hispanics, patients older than 44 years, patients with diabetes mellitus as the cause of ESRD, and patients dialyzing less than six months (TABLE 8). Most patient groups examined did not meet the current NKF-K/DOQI recommendation of 40% of prevalent patients having an AVF as their vascular access (4) (TABLE 8, FIGURE 22). The percent of prevalent patients with a catheter as their vascular access, by several patient characteristics, is shown in Table 8 and Figure 23. More women, Whites, patients \geq 75 years old, and patients in the lowest quartile of post-dialysis BMI had a catheter access compared to men, Blacks, younger patients, and patients in higher quartiles of post-dialysis BMI.

More women were dialyzed with a chronic catheter compared to men (FIGURE 21). None of the patient groups examined met the current NKF-K/DOQI recommendation of less than 10% of chronic hemodialysis patients with a catheter as their vascular access (4).

There was wide geographic variation in the percent of all patients dialyzed with an AVF; the percent ranged from 28% to 56% among the 18 Network areas (FIGURE 24, TABLE 9). This geographic variation in AVF use was also noted for incident patients, ranging from 22% to 61% among the 18 Network areas (FIGURE 25).

The percent of patients dialyzed with a catheter exhibited geographic variation, ranging from 19% to 37% among the 18 Network areas (FIGURE 26, TABLE 10). Chronic catheter use was 20% nationally, and ranged from 13% to 29% across the 18 Network areas (FIGURE 27). Figure 22: Percent of all adult in-center hemodialysis patients dialyzed with an AV fistula as their vascular access on their last hemodialysis session during October-December 2003, by patient characteristics. 2004 ESRD CPM Project.

Post-dialysis BMI quartiles: 1) < 22.2, 2) 22.2-25.7, 3) 25.8-30.5, 4) >30.5

Figure 23: Percent of all adult in-center hemodialysis patients dialyzed with a catheter as their vascular access on their last hemodialysis session during October–December 2003, by patient characteristics. 2004 ESRD CPM Project.

Post-dialysis BMI quartiles: 1) < 22.2, 2) 22.2-25.7, 3) 25.8-30.5, 4) >30.5

Figure 24: Percent of all adult in-center hemodialysis patients dialyzed with an AV fistula as their vascular access on their last hemodialysis session during October–December 2003, by Network. 2004 ESRD CPM Project.

Figure 25: Percent of incident* adult in-center hemodialysis patients dialyzed with an AV fistula as their vascular access on their last hemodialysis session during October–December 2003, by Network. 2004 ESRD CPM Project.

*An incident patient is defined as a patient initiating in-center hemodialysis on or between January 1, 2003 and August 31, 2003.

Figure 26: Percent of all adult in-center hemodialysis patients dialyzed with a catheter as their vascular access on their last hemodialysis session during October–December 2003, by Network. 2004 ESRD CPM Project.

Figure 27: Percent of all adult in-center hemodialysis patients dialyzed with a catheter continuously for 90 days or longer as their vascular access on their last hemodialysis session during October–December 2003, by Network. 2004 ESRD CPM Project.

TABLE 9: Percent of all adult in-center hemodialysis patients with an AV fistula access on their last hemodialysis session during and Notwork 2004 FSPD CDM During Course of FSPD October-December 2003 by conder race ethnicity age

ALINVEL-DECENTIVEL 21	,	y Seru	101, 1U	re, en	mond	, učc,	cumo	int h	и, си	1217 11	W 01 V.	+007			i una	.10			
PATIENT	7							NET	WOR	K									
CHAKACIEKISIIC	1	2	3	4	S	9	٢	8	6	10	11	12	13	14	15	16	17	18	SU
ALL	48	43	35	37	28	29	35	28	31	37	36	35	31	29	45	56	41	38	35
GENDER																			
Men	57	54	40	45	35	39	43	35	40	47	44	46	44	36	55	65	50	47	44
Women	37	32	26	27	20	20	26	20	20	25	26	24	18	21	35	44	29	29	25
RACE																			
Black	45	40	26	34	25	26	30	27	24	35	28	29	28	26	26	33	33	39	29
White	49	44	42	40	30	34	38	27	35	37	38	36	32	28	45	56	39	39	38
ETHNICITY																			
Hispanic	50	60	36	*	*	*	29	*	*	47	*	*	*	25	50	39	43	39	38
Non-Hispanic	48	41	33	38	27	29	37	28	30	35	36	35	30	32	43	57	40	38	35
AGE GROUP (years)																			
18-44	62	54	40	46	42	40	39	32	28	46	55	42	47	54	48	68	44	54	46
45-54	42	46	40	36	32	27	43	35	44	43	39	47	30	33	43	49	39	43	39
55-64	60	45	32	37	24	25	33	28	38	32	28	39	34	26	46	50	40	33	34
65-74	48	45	36	37	23	27	28	25	27	27	35	28	20	20	46	60	46	28	32
75+	38	30	29	34	21	28	37	16	23	38	30	25	24	*	42	53	34	32	30
CAUSE OF ESRD																			
Diabetes Mellitus	46	40	33	35	24	25	26	24	30	29	33	36	24	20	48	51	34	36	32
Other Causes Combined	50	46	36	39	30	32	43	30	32	41	38	34	36	36	41	58	47	40	38

TABLE 10: Percent of all adult in-center hemodialysis patients with a catheter access on their last hemodialysis session during

October–December 2(<i>)03, b</i> .	y genc	ler, ra	ce, eth	micity,	age, a	cause	of ESI	RD, at	ıd Net	work.	2004	ESRD	CPM	Proje	ct.			
PATIENT	,							NETV	WOR]	X									
CHAKACTERISTIC	1	7	3	4	S	9	٢	8	6	10	11	12	13	14	15	16	17	18	SN
ALL	28	28	37	28	28	26	31	24	36	29	27	28	28	19	26	20	21	22	27
GENDER																			
Men	24	26	34	23	25	23	28	21	33	24	23	25	24	18	22	16	19	20	24
Women	32	29	41	34	31	29	35	28	40	34	32	31	31	20	29	25	25	24	30
RACE																			
Black	24	25	38	24	26	25	31	24	37	32	23	30	24	16	43	*	19	18	26
White	28	29	35	31	33	28	33	24	35	28	31	28	35	21	27	20	24	24	28
ETHNICITY Hispanic	*	35	40	*	*	*	29	*	*	*	*	*	*	18	22	*	20	17	23
Non-Hispanic	28	27	36	28	28	26	31	24	36	30	27	28	28	20	27	20	22	26	27
AGE GROUP (years)																			
18-44	17	29	32	26	29	22	26	32	33	29	18	25	22	14	24	18	19	22	24
45-54	38	25	34	29	29	28	20	19	28	20	26	27	23	17	23	22	20	20	24
55-64	19	28	37	23	22	32	34	22	34	30	28	30	27	21	24	23	20	24	27
65-74	28	24	38	27	23	20	34	26	35	32	29	27	28	15	21	15	22	25	26
75+	33	32	42	35	36	28	36	24	47	33	30	30	38	29	38	21	25	21	32
CAUSE OF ESRD																			
Diabetes Mellitus	28	26	40	30	31	26	38	23	36	33	28	27	31	18	22	20	25	22	27
Other Causes Combined	27	28	35	27	26	26	26	25	36	27	26	29	25	20	30	20	19	22	26

27% (n=2,301) of all patients in the sample for analysis were dialyzed with a catheter during their last hemodialysis session of the study period (TABLES 8, 10). The most common reasons for catheter placement were: no fistula or graft surgically planned (24%), the fistula or graft was maturing, not ready to cannulate (23%), and no fistula or graft surgically created at this time (22%) (TABLE 11). 13% of patients were not candidates for fistula or graft placement as all sites had been exhausted.

75% of patients with an AVF or AV graft (n=6,238) had their vascular access monitored for stenosis during the study period. For this subset of patients, 76% were monitored with dynamic venous pressure, 9% with static venous pressure, 7% with the dilution technique, 2% with Color-flow Doppler, and 15% with "Other" techniques (groups not mutually exclusive).

14% of incident patients had an AVF as their vascular access upon initiation of a maintenance course of hemodialysis; 25% of incident patients had an AVF as their vascular access 90 days later (FIGURE 28). 72% of incident patients had a catheter as their vascular access upon initiation of a maintenance course of hemodialysis; 52% of incident patients had a catheter as their vascular access 90 days later (FIGURE 28).

Figure 28: Percent of incident* adult in-center hemodialysis patients with different types of vascular access upon initiation of a maintenance course of hemodialysis and 90 days later. 2004 ESRD CPM Project.

*An incident patient is defined as a patient initiating in-center hemodialysis on or between January 1, 2003 and August 31, 2003.

TABLE 11: Reasons for catheter placement in adult in-center hemodialysis patients using catheters on their last hemodialysis session during October-December 2003. 2004 ESRD CPM Project.

Reason	n	(%)
TOTAL	2,301	(100)
No fistula or graft surgically planned	561	(24)
Patient preference	306	
Peripheral vascular disease	143	
Physician preference	85	
Patient size too small for AV fistula/graft	39	
Renal transplantation scheduled	22	
Fistula or graft maturing, not ready to cannulate	522	(23)
No fistula or graft surgically created at this time	517	(22)
All fistula or graft sites have been exhausted	301	(13)
Temporary interruption of fistula or graft use due to clotting, revision, or other reasons	271	(12)
Other	111	(5)

*Note: Subtotals may not add up to 2,301 as respondents could choose multiple reasons. Percents may not add up to 100% due to rounding.

3. CPM and other Findings for October-December 2003 compared to previous study periods

Although there was no change in the percent of patients dialyzed with a catheter on their last hemodialysis session during October-December 2003 compared to October-December 2002 (27% each period), more patients in 2002 and 2003 were dialyzed with a catheter compared to patients in years prior to 2002 (19%, 23%, 24%, and 26% in 1998, 1999, 2000, and 2001, respectively) (FIGURES 2, 29). A similar pattern was noted for incident patients, with 40% of patients dialyzed with a catheter on their last hemodialysis session in late 2003 compared to 41% of patients in late 2002 (FIGURE 29).

There has been some improvement in the percent of all patients dialyzed with an AVF on their last hemodialysis session from late 1998 to late 2003 (26% vs. 35%, respectively) (FIG-URE 30). 26% of incident patients were dialyzed with an AVF on their last hemodialysis session in late 1998 compared to 35% in late 2003 (FIGURE 30).

14% of all patients were dialyzed with a chronic catheter continuously for 90 days or longer during late 1998 and 1999, compared to 20% of all patients during October-December 2003 (FIGURE 2).

There was a 24% increase in the percent of reported dynamic venous pressure monitoring for patients with either an AVF or an AV graft as their vascular access from late 2001 to late 2003 (FIGURE 31).

Figure 29: Percent of adult in-center hemodialysis patients (all and incident*) dialyzed with a catheter as their access on their last hemodialysis session during October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

Incident All Percent of Patients

*An incident patient is defined as a patient initiating in-center hemodialysis on or between January 1 and August 31, of the study year.

Figure 30: Percent of adult in-center hemodialysis patients (all and incident*) dialyzed with an AV fistula as their vascular access on their last hemodialysis session during October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

*An incident patient is defined as a patient initiating in-center hemodialysis on or between January 1 and August 31, of the study year.

Figure 31: Types of stenosis monitoring reported for adult incenter hemodialysis patients with either an AV fistula or an AV graft as their vascular access on their last hemodialysis session during October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

See Appendix 1 for a complete description of the types of stenosis monitoring.

C. ANEMIA MANAGEMENT

1. CPM Findings for October–December 2003

Data were collected to assess three anemia management CPMs. The time period from which these data were abstracted was October–December 2003.

Anemia Management CPM I — The target hemoglobin is 11-12 g/dL (110-120 g/L). Patients with a mean hemoglobin > 12 g/dL (120 g/L) and not prescribed Epoetin were excluded from analysis for this CPM.

<u>FINDING</u>: For the last quarter of 2003, 36% of the in-center hemodialysis patients who met the inclusion criteria (n=8,441) had a mean hemoglobin 11-12 g/dL (110-120 g/L).

Anemia Management CPM IIa — For all anemic patients (hemoglobin < 11 g/dL [110 g/L]) or patients prescribed Epoetin, the percent transferrin saturation and the serum ferritin concentration are assessed (measured) at least once in a threemonth period.

<u>FINDING</u>: For the last quarter of 2003, 96% of the in-center hemodialysis patients who met the inclusion criteria (n=8,415) had at least one documented (measured) transferrin saturation value and at least one documented (measured) serum ferritin concentration value during the study period.

Anemia Management CPM IIb — For all anemic patients (hemoglobin < 11 g/dL [110 g/L]) or patients prescribed Epoetin, at least one serum ferritin concentration \geq 100 ng/mL and at least one transferrin saturation \geq 20% were documented during the three-month study period.

<u>FINDING</u>: For the last quarter of 2003, 81% of the in-center hemodialysis patients who met the inclusion criteria (n=8,415) had at least one documented transferrin saturation \geq 20% and at least one documented serum ferritin concentration \geq 100 ng/mL during the study period.

Anemia Management CPM III — All anemic patients (hemoglobin < 11 g/dL [110 g/L]), or patients prescribed Epoetin, and with at least one transferrin saturation < 20% or at least one serum ferritin concentration < 100 ng/mL during the study period are prescribed intravenous iron; UNLESS the mean transferrin saturation was \geq 50% or the mean serum ferritin concentration was \geq 800 ng/mL; UNLESS the patient was in the first three months of dialysis and was prescribed a trial dose of oral iron.

<u>FINDING:</u> 79% of the in-center hemodialysis patients who met the inclusion criteria (n=2,696) were prescribed intravenous iron in at least one month during October–December 2003.

2. Other Anemia Management Findings for October-December 2003

NOTE: The following findings apply to all the adult in-center hemodialysis patients in the sample for analysis regardless of when they first initiated dialysis.

The distributions of mean hemoglobin values are shown in Figure 32 for all patients in the sample and for Black and White patients. The mean (\pm SD) hemoglobin value for all patients in this sample was 11.9 (\pm 1.2) g/dL (119 [\pm 12] g/L). The mean hemoglobin values for gender, race, ethnicity, age, diagnosis, duration of dialysis, and selected clinical parameters are shown in Table 12.

The mean hemoglobin value was lower for women and patients dialyzing less than six months compared to men and patients dialyzing six months or longer.

The mean hemoglobin value was higher for patients with a mean $spKt/V \ge 1.2$ compared to patients with a mean spKt/V < 1.2, higher for patients with higher mean serum albumin values, and higher for patients dialyzed with an AVF or AV graft compared to patients dialyzed with a catheter (TABLE 12).

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

	Mean		Perce	nt of	patien	ts wit	h
Patient	hemo-		her	noglo	bin va	lues	
Characteristic	globin		10-	11-	12-	13-	
	(g/dL)	< 10	10.9	11.9	12.9	13.9	14+
TOTAL	11.9	6	14	34	32	12	3
GENDER							
Men	11.9	6	14	32	32	12	4
Women	11.8	6	14	35	32	11	2
RACE							
American Indian/							
Alaska Native	12.1	*	10	26	37	17	4
Asian/Pacific							
Islander	11.9	4	10	42	32	9	3
Black	11.9	6	14	33	31	13	3
White	11.8	6	14	34	32	11	3
Other/Unknown	11.9	8	12	29	32	14	5
ETHNICITY							
Hispanic	11.9	7	12	34	31	12	4
Non-Hispanic	11.9	6	14	34	32	12	3
AGE GROUP (years)							
18-44	11.8	9	15	30	29	14	4
45-54	11.9	7	14	33	30	12	4
55-64	11.8	6	14	33	31	13	3
65-74	11.8	5	13	36	32	11	2
75+	11.9	5	13	35	35	11	3
CAUSE of ESRD							
Diabetes mellitus	11.8	6	14	34	32	11	3
Hypertension	11.9	6	13	34	31	13	3
Glomerulonephritis	11.9	6	14	34	32	11	3
Other/Unknown	11.8	8	14	31	32	11	3
DURATION of							
DIALYSIS (years)							
< 0.5	11.3	19	24	26	19	10	2
0.5-0.9	12.1	5	11	27	35	18	5
1.0-1.9	12.0	4	12	33	38	11	2
2.0-2.9	11.9	4	13	30 20	34 22	10	2
3.0-3.9 4 0+	11.9	5	12	37	30	11	3 4
4.01	11.7	5	12	57	50	11	-
MEAN spKt/V	11.0		12	24	22	10	2
≥ 1.2 < 1.2	11.9	12	15	34	32	12	3
< 1.2	11.7	12	10	20	20	15	4
MEAN SERUM							
ALBUMIN (g/dL)	12.0	4	10	24	24	12	2
$\geq 3.3/3.2$ BCG/BCPA	12.0	16	12	34 20	24 22	15	3 2
< 3.3/3.2 DCU/DCP	11.3	10	23	50	23	/	2
ACCESS TYPE		_					
AVF AV Conft	12.0	5	12	34	34	13	4
AV Grait	11.9	4	15	20	33	11	3
Catheter	11.0	11	1/	50	28	11	3

TABLE 12: Mean hemoglobin values (g/dL) for adult in-centerhemodialysis patients in the US, by patient characteristics,October–December 2003. 2004 ESRD CPM Project.

* Value suppressed because $n \leq 10$.

^ BCG/BCP = bromcresol green/bromcresol purple laboratory methods.

Note: Percentages may not add up to 100% due to rounding.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10. Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10.

The prevalence of patients with mean hemoglobin < 10 g/dL (100g/L) was 6% nationally and ranged from 5% to 8% among Networks (FIGURE 33). The prevalence of patients with mean hemoglobin < 10 g/dL (100 g/L) was higher in patients dialyzing less than 6 months compared to those dialyzing 6 months or longer and higher in patients 18-44 years of age compared to older patients.

A higher proportion of patients with a mean spKt/V < 1.2 compared to patients with higher mean spKt/V values had a mean hemoglobin value <10 g/dL (100g/L). A higher proportion of patients dialyzed with a catheter had a mean hemoglobin < 10 g/ dL (100 g/L) compared to patients dialyzed with either an AVF or an AV graft. A higher proportion of patients with a mean serum albumin < 3.5/3.2 g/dL (35/32 g/L) (BCG/BCP) compared to patients with higher mean serum albumin values had a mean hemoglobin < 10 g/dL (100 g/L) (TABLE 12).

Figure 33: Percent of adult in-center hemodialysis patients with mean hemoglobin < 10 g/dL, by Network, October–December 2003. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

The percent of all patients with mean hemoglobin \geq 11 g/dL (110 g/L) was 80% nationally and ranged from 77% to 83% by Network (TABLE 13, FIGURES 34, 35).

The percent of patients with mean hemoglobin \ge 11 g/dL (110 g/L) by selected patient characteristics and clinical parameters is shown in Figure 36. More patients dialyzing for six months or longer had a mean hemoglobin \ge 11 g/dL (110 g/L) compared to patients dialyzing less than six months (83% vs. 57%, respectively). A higher percent of patients dialyzed with an AVF or an AV graft met this threshold compared to patients dialyzed with a catheter (84% and 83% compared to 72%, respectively). Patients with higher mean spKt/V and serum albumin values were more likely to meet this hemoglobin target than patients with lower spKt/Vs and serum albumin values.

TABLE 13: Percent of adult in-center hemodialysis patients with mean hemoglobin ≥ 11 g/dL, by gender, race, ethnicity, age, access type, mean serum albumin, and Network, October-December 2003. 2004 ESRD CPM Project.

PATIENT									NETV	VORI									
CHAKAC I EKISII C	1	7	e	4	S	9	2	×	6	10	11	12	13	14	15	16	17	18	US
ALL	81	81	82	80	79	78	LL	80	80	83	81	80	LL	6L	83	78	82	83	80
GENDER Men Women	83 79	79 82	80 85	80 79	82 76	6L		79 81	81 78	85 82	82 80	79 81	76 78	78 80	82 84	81 75	79 85	81 84	80
RACE Black White	82 82	81 79	83 84	82 77	97 79	77 78	72 81	79 81	81 80	85 82	82 79	73 82	77 77	80 78	81 81	67 80	86 80	84 82	79 80
ETHNICITY Hispanic Non-Hispanic	78 81	87 80	78 84	85 79	* 467	* 78	81 77	* 08	* 80	81 83	86 81	93 79	*	76 81	80 85	85 78	83	82 83	81 80
AGE GROUP (years) 18-44 45-54 55-64 65-74 75+	78 78 81 83 83	78 81 83 84 84	85 82 84 83 83	76 78 81 80 80	77 74 79 83 81	75 75 83 83	75 75 71 80 83	76 83 81 85	68 82 83 83	82 83 88 81	76 77 83 86	71 71 83 85 84	72 82 73 84	79 71 81 86	82 87 88 88 82 77	72 75 80 87 77	79 89 81 82	76 82 85 84	76 79 80 83
ACCESS TYPE AVF AVG Catheter	86 78 76	83 82 77	87 84 76	83 84 70	84 83 70	79 83 67	89 77 65	77 85 73	85 82 73	86 86 78	84 82 76	82 82 73	83 81 65	80 81 73	88 84 74	83 79 67	86 85 69	85 89 68	84 83 72
MEAN SERUM ALBUN ≥ 3.5/3.2 g/dL BCG/BCP ^a	41N 84	87	87	85	85	82	82	84	84	86	85	82	82	82	87	82	87	87	84
< 3.5/3.2 g/dL BCG/BCP	68	58	66	62	56	55	61	61	99	70	64	70	55	62	64	62	60	59	62
*Value suppressed because ^a bromecresol green/bromcre Note: To convert hemoglobin Note: To convert serum albur	n ≤ 10. sol pu conve⊧ nin cor	rple labo ntional u vention	oratory i inits of (al units	method: g/dL to : of g/dL	s SI units to SI ur	(g/L), π iites (g/l	ultiply t _), multi	y 10. ply by `	.0										

Figure 34: Percent of adult in-center hemodialysis patients with mean hemoglobin $\geq 11 \text{ g/dL}$, by Network, October–December 2003. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Figure 35: Percent of adult in-center hemodialysis patients with mean hemoglobin $\geq 11 \text{ g/dL}$, by Network, October–December 2003. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Figure 36: Percent of adult in-center hemodialysis patients with mean hemoglobin ≥ 11 g/dL, by selected patient characteristics and clinical parameters, October-December 2003. 2004 ESRD CPM Project.

Figure 37: Distribution of mean intravenous iron doses (mg/month) for adult in-center hemodialysis patients, October-December 2003. 2004 ESRD CPM Project.

NOTE: For this report, missing monthly IV iron doses were considered to be zero. For the 2002 ESRD CPM Annual Report (FIGURE 40, pg. 36), missing monthly IV iron doses were considered missing.

(g/L), multiply by 10.

During this study period, data were collected on additional measures related to anemia management (TABLE 14).

The national average (\pm SD) transferrin saturation for the patients in the sample was 29.3 (\pm 12.1)% and ranged from 27.1% to 32.0% among the 18 Network areas (TABLE 14). Table 14 also provides the percent of patients with mean transferrin saturation \geq 20% nationally (81%) and by Network area, ranging from 72% to 87%.

The national average (\pm SD) serum ferritin concentration for the patients in the sample was 596 (\pm 419)ng/mL and ranged from 517 to 660 ng/mL among the 18 Network areas. The percent of patients with a mean serum ferritin concentration \geq 100 ng/mL nationally was 94%, ranging from 91% to 97% among the 18 Network areas (TABLE 14).

66% of all patients in the sample were prescribed either intravenous (IV) or oral iron at least once during the three-month study period. The percent of patients with IV iron prescribed nationally was 65%, ranging from 55% to 73% among the 18 Network areas (TABLE 14).

For the subset of patients with both mean transferrin saturation < 20% and mean serum ferritin concentration < 100 ng/mL (n=209 or 2% of patients), only 74% were prescribed IV iron at least once during the three-month study period.

The mean administered IV iron dose was 233 (\pm 194) mg/month. The distribution of mean administered IV iron doses (mg/month) is shown in Figure 37. 96% of all patients were prescribed Epoetin, of which 94% were prescribed Epoetin by the IV route; and 7% by the SC route (groups not mutually exclusive). Prescribed SC administration, the route recommended by the NKF-K/DOQI Clinical Practice Guidelines for the Treatment of Anemia of Chronic Renal Failure (5, 16), ranged from 3% to 16% among the 18 Network areas (TABLE 14). The mean (\pm SD) weekly Epoetin dose was 271.3 (\pm 251.8) units/kg/week by the IV route, and 206.2 (\pm 184.8) units/kg/week by the SC route.

17 (0.2%) patients in the sample for analysis were prescribed Darbepoetin at least once during the three-month study period.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10. Note: To convert serum albumin conventional units of g/dL to SI units

TABLE 14: Regional variation for various anemia management measures for adult in-center hemodialysis patients including the percent of patients with mean hemoglobin ≥ 11 g/dL, mean hemoglobin (g/dL), and mean serum albumin ≥ 4.0 BCG^A for these patients nationally and by Network, October-December 2003. 2004 ESRD CPM Project.

ANEMIA									NET	WOF	RK								
MANAGEMENT MEASURE:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	US
Percent of patients with mean hemoglobin ≥ 11 g/dL	81	81	82	80	79	78	77	80	80	83	81	80	77	79	83	78	82	83	80
Mean hemoglobin (g/dL)	11.8	11.8	11.9	11.7	11.8	11.8	11.7	11.8	12.0	12.0	12.0	11.7	11.8	11.8	12.0	11.8	11.9	11.8	11.9
Percent of patients with mean serum albumin ≥ 4.0 g/dL BCG^	30	40	35	35	34	40	36	43	41	46	38	33	39	43	34	32	42	41	39
Average transferrin saturation (TSAT) (%)	29.0	31.4	28.8	28.6	29.0	29.4	28.6	27.8	28.0	30.2	29.8	27.2	28.7	29.6	29.1	27.1	29.0	32.0	29.3
Percent of patients with mean TSAT $\ge 20\%$	79	79	80	81	83	85	80	78	74	82	81	75	81	83	82	72	78	87	81
Average serum ferritin concentration (ng/mL)	542	641	538	587	548	596	656	613	601	649	552	604	624	620	525	517	537	660	596
Percent of patients with mean serum ferritin concentration ≥ 100 ng/mL	92	92	91	94	91	94	96	95	94	95	94	95	96	95	93	97	94	94	94
Percent of patients with mean serum ferritin concentration > 800 ng/mL	22	31	19	24	21	24	31	26	24	28	22	27	28	28	18	17	19	31	25
Percent of all patients with IV iron prescribed	65	64	73	65	69	66	66	67	70	65	66	64	66	67	65	64	55	56	65
Mean IV iron dose (mg/month)	224	245	245	244	249	226	248	243	229	223	263	226	242	217	240	224	186	219	233
Percent of patients prescribed Epoetin	98	97	99	96	97	96	98	96	97	95	97	97	96	96	96	96	96	96	96
Percent of patients * with subcutaneous Epoetin prescribed	4	4	10	*	3	*	3	*	11	4	4	6	7	12	6	11	13	16	7
Percent of patients with mean hemoglobin <11g/dL with Epoetin prescribed	99	96	99	99	96	94	98	96	94	95	96	96	97	96	96	96	98	92	96

*For subset of patients with serum albumin tested by the bromcresol green (BCG) laboratory method

*Among patients prescribed Epoetin Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10.

3. CPM and other Findings for October-December 2003 compared to previous study periods

NOTE: The following findings apply to all the adult in-center hemodialysis patients in the sample for analysis regardless of when they first initiated dialysis.

The mean hemoglobin (\pm SD) from October–December 2001 to October–December 2003 increased from 11.7 (\pm 1.2) g/dL (117 [\pm 12] g/L) to 11.9 (\pm 1.2) g/dL (119 [\pm 12] g/L) (FIGURE 7), and the percent of patients with a mean hemoglobin \geq 11 g/dL (110 g/L) increased significantly from 76% to 80% (FIG-URES 6, 38).

In addition to the improvement in the percent of patients with mean hemoglobin \geq 11 g/dL (110 g/L), there was also a decrease in the percent of patients with mean hemoglobin < 10 g/dL (100 g/L). In October–December 2001, 9% of Black patients and 7% of White patients had a mean hemoglobin < 10 g/dL (100 g/L), while in October–December 2003, 6% of Black patients and 6% of White patients had a mean hemoglobin < 10 g/dL (100 g/L).

Figure 39 depicts the trend for increasing weekly Epoetin dosing (units/kg/week) for selected years from late 1997 to late 2003. SC Epoetin doses were systematically lower than IV Epoetin doses at all hemoglobin categories examined. Of the patients prescribed Epoetin, 7% of patients were prescribed SC Epoetin in late 2003.

Figure 40 depicts the status of iron stores for the sampled patients in late 2003 compared to selected previous study periods. 65% of patients were prescribed IV iron in late 2003 compared to 51% in late 1996. Within the subgroup of patients with mean transferrin saturation < 20% and mean serum ferritin concentration < 100 ng/mL, 74% of patients were prescribed IV iron at least once over the three-month study period in late 2003, compared to 37% in late 1996.

Figure 38: Percent of adult in-center hemodialysis patients with mean hemoglobin values ≥ 11 g/dL, by race, October– December 2003 compared to previous study periods. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Figure 39: Mean prescribed weekly Epoetin dose (units/kg/ week) for adult in-center hemodialysis patients, by hemoglobin category and route of administration, October–December 2003 compared to selected previous study periods. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10. *Value suppressed because $n \le 10$.

D. SERUM ALBUMIN

1. CPM Findings for October–December 2003

Because serum albumin is not considered to be an official CPM for this project, there are no CPM findings to report for this section.

2. Other Serum Albumin Findings for October– December 2003

The two commonly used laboratory methods for determining serum albumin values, bromcresol green (BCG) and bromcresol purple (BCP), have been reported to yield systematically different results (6). Therefore, we assessed the serum albumin values reported for these two methods separately. The mean (\pm SD) serum albumin value for patients whose value was determined by the BCG method (n=8,104) was 3.8 (\pm 0.4) g/dL (38 [\pm 4] g/L), and by the BCP method (n=530) was 3.5 (\pm 0.5) g/dL (35 [\pm 5] g/dL) (FIGURE 41).

Mean serum albumin values < 3.5/3.2 g/dL (35/32 g/L) (BCG/ BCP) are defined as inadequate for the purpose of this report and have been shown to be markers for diminished survival (29-31). Figure 41 displays the distribution of serum albumin values by laboratory method.

The percents of patients with mean serum albumin $\ge 4.0/3.7$ g/dL (40/37 g/L) (BCG/BCP) and $\ge 3.5/3.2$ g/dL (35/32 g/L)(BCG/BCP) by gender, race, ethnicity, age, diagnosis groups, duration of dialysis, and selected clinical parameters are shown in Table 15. A higher percent of men, Blacks, Hispanics, patients 18-44 years old, patients with causes of ESRD other than diabetes mellitus, and patients dialyzing six months or longer had a mean serum albumin $\ge 4.0/3.7$ g/dL (40/37 g/L) (BCG/BCP) compared to women, Whites, non-Hispanics, patients older than 44 years, patients with diabetes mellitus as the cause of ESRD, and patients dialyzing less than six months (TABLES)

Figure 41: Distribution of mean serum albumin for adult incenter hemodialysis patients, by laboratory method, October– December 2003. 2004 ESRD CPM Project.

* Note: BCG/BCP = bromcresol green/bromcresol purple laboratory methods.

Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10.

15, 16, FIGURES 42, 43). Only 21% of patients dialyzing less than six months achieved a serum albumin that met the outcome goal of \ge 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP) compared to 41% of patients dialyzing six months or more.

TABLE 15: Percent of adult in-center hemodialysis patients with mean serum albumin values $\geq 4.0/3.7$ g/dL (BCG/BCP)* and $\geq 3.5/3.2$ g/dL (BCG/BCP) in the US, by patient characteristics, October-December 2003. 2004 ESRD CPM Project.

TOTAL 39 81 GENDER Men 44 84 Women 32 79 RACE American Indian/ Alaska Native 25 74 Asian/Pacific Islander 48 87 Black 41 83 White 36 80 Other/Uknown 43 84 ETHNICITY Hispanic 42 83 Non-Hispanic 38 81 AGE GROUP (years) 18-44 53 87 45-54 45 83 S5-64 40 81 65-74 34 82 75+ 27 76 CAUSE of ESRD Biobactes mellitus 31 78 Hypertension 45 85 66 0ther/Unknown 42 81 DURATION of DIALYSIS (years) <0.5 21 58 0.5-0.9 35 78 0.5-0.9 35 78 85 2.0-2.9 39 85 2.0-	Patient Percen Characteristic	t of Patients with Me ≥ 4.0/3.7 g/dL	ean Serum Albumin ≥ 3.5/3.2 g/dL
GENDER 44 84 Women 32 79 RACE American Indian/ Alaska Native 25 74 Asian/Pacific Islander 48 87 Black 41 83 White 36 80 Other/Unknown 43 84 ETHNICITY 1 83 Hispanic 42 83 Non-Hispanic 38 81 AGE GROUP (years) 1 84 18-44 53 87 45-54 45 83 55-64 40 81 65-74 34 82 75+ 27 76 CAUSE of ESRD 1 1 Diabetes mellitus 31 78 Hypertension 45 85 Glomerulonephritis 49 86 Other/Unknown 42 81 DURATION of DIALYSIS (years) 5 86 <0.5-0.9 35 78 1.0-1.9 39 85 2	TOTAL	39	81
Men 44 84 Women 32 79 RACE	GENDER		
Women 32 79 RACE American Indian/ Alaska Native 25 74 Alaska Native 25 74 Alaska Native 25 74 Alaska Native 25 74 Asian/Pacific 18 87 Black 41 83 White 36 80 Other/Unknown 43 84 ETHNICITY Hispanic 42 83 Non-Hispanic 38 81 AGE GROUP (years) 1 18-44 53 87 18-44 53 87 45-54 45 83 55-64 40 81 65-74 34 82 75+ 27 76 CAUSE of ESRD Diabetes mellitus 31 78 Hypertension 45 85 61 61 61 Other/Unknown 42 81 DURATION of DIALYSIS (years) 20.5 21 58 < 0.5	Men	44	84
RACE American Indian/ Alaska Native 25 74 Alaska Native 25 74 Alaska Native 25 74 Asian/Pacific 1 83 Islander 48 87 Black 41 83 White 36 80 Other/Unknown 43 84 ETHNICITY Hispanic 42 83 Non-Hispanic 38 81 AGE GROUP (years) 1 1 45.54 83 18-44 53 87 45.55 83 55-64 40 81 65-74 34 82 75+ 27 76 CAUSE of ESRD 1 1 1 Diabetes mellitus 31 78 Hypertension 42 81 DURATION of DIALYSIS (years) 1 5 66 0 60 0 60 0 60 0 61 0 1 5 58 0.5-0.9 35 78 1.0-1.9 39 <td>Women</td> <td>32</td> <td>79</td>	Women	32	79
American Indian/ 25 74 Alaska Native 25 74 Asian/Pacific 87 Black 41 83 White 36 80 Other/Unknown 43 84 ETHNICITY Hispanic 42 83 Non-Hispanic 38 81 AGE GROUP (years) 1 84 18-44 53 87 45-54 45 83 55-64 40 81 65-74 34 82 75+ 27 76 CAUSE of ESRD 10 10 Diabetes mellitus 31 78 Hypertension 45 85 Glomerulonephritis 49 86 Other/Unknown 42 81 DURATION of DIALYSIS (years) < 0.5	RACE		
Alaska Native 25 74 Asian/Pacific	American Indian/		
Asian/Pacific Islander 48 87 Black 41 83 White 36 80 Other/Unknown 43 84 ETHNICITY 1 1 Hispanic 42 83 Non-Hispanic 38 81 AGE GROUP (years) 1 1 18-44 53 87 45-54 45 83 55-64 40 81 65-74 34 82 75+ 27 76 CAUSE of ESRD 1 78 Hypertension 45 85 Glomerulonephritis 49 86 Other/Unknown 42 81 DURATION of DIALYSIS (years) < 0.5	Alaska Native	25	74
Islander 48 87 Black 41 83 White 36 80 Other/Unknown 43 84 ETHNICITY	Asian/Pacific		
Black 41 83 White 36 80 Other/Unknown 43 84 ETHNICITY Hispanic 42 83 Non-Hispanic 38 81 AGE GROUP (years) 1 1 84 I8-44 53 87 45-54 83 55-64 40 81 65-74 34 82 75+ 27 76 76 76 76 76 CAUSE of ESRD Diabetes mellitus 31 78 85 78 Diabetes mellitus 31 78 85 76 76 CAUSE of ESRD 0ther/Unknown 42 81 81 DURATION of DIALYSIS (years) <0.5	Islander	48	87
White 36 80 Other/Unknown 43 84 ETHNICITY Hispanic 42 83 Non-Hispanic 38 81 AGE GROUP (years) 18-44 53 87 18-44 53 87 45-54 45 83 55-64 40 81 65-74 34 82 75+ 27 76 CAUSE of ESRD Diabetes mellitus 31 Diabetes mellitus 31 78 Hypertension 45 85 Glomerulonephritis 49 86 Other/Unknown 42 81 DURATION of DIALYSIS (years) < 0.5	Black	41	83
Other/Unknown 43 84 ETHNICITY Hispanic 42 83 Non-Hispanic 38 81 AGE GROUP (years) 18-44 53 87 18-44 53 87 45-54 45 83 55-64 40 81 65-74 34 82 75+ 27 76 CAUSE of ESRD Diabetes mellitus 31 Diabetes mellitus 31 78 Hypertension 45 85 Glomerulonephritis 49 86 Other/Unknown 42 81 DURATION of DIALYSIS (years) < 0.5	White	36	80
ETHNICITY Hispanic 42 83 Non-Hispanic 38 81 AGE GROUP (years) 18-44 53 87 18-44 53 87 45-54 45 83 55-64 40 81 65-74 34 82 75+ 27 76 CAUSE of ESRD Diabetes mellitus 31 Diabetes mellitus 31 78 Hypertension 45 85 Glomerulonephritis 49 86 Other/Unknown 42 81 DURATION of DIALYSIS (years) $< 0.5 21$ 58 $< 0.5 21$ 58 $0.5 - 0.9$ 35 $1.0 - 1.9$ 39 85 $2.0 - 2.9$ 39 86 $3.0 - 3.9$ 45 84 $4.0 +$ 44 87 MEAN spKt/V ≥ 1.2 39 82 < 1.2 32 73 MEAN hgb (g/dL) ≥ 11 42 86 < 11 42 86 <	Other/Unknown	43	84
Hispanic4283Non-Hispanic3881AGE GROUP (years)18-44538718-44538745-54458355-64408165-74348275+2776CAUSE of ESRDDiabetes mellitus31Diabetes mellitus3178Hypertension4585Glomerulonephritis4986Other/Unknown4281DURATION of DIALYSIS (years) < 0.5 21< 0.5	ETHNICITY		
Non-Hispanic3881AGE GROUP (years)18-44538718-44538745-54458355-64408165-74348275+2776CAUSE of ESRDDiabetes mellitus3178Hypertension4585Glomerulonephritis4986Other/Unknown4281DURATION of DIALYSIS (years)<	Hispanic	42	83
AGE GROUP (years)18-44538745-54458355-64408165-74348275+2776CAUSE of ESRDDiabetes mellitus3178Hypertension4585Glomerulonephritis4986Other/Unknown4281DURATION of DIALYSIS (years)< 0.5	Non-Hispanic	38	81
18-44538745-54458355-644081 $65-74$ 3482 $75+$ 2776CAUSE of ESRDDiabetes mellitus3178Hypertension4585Glomerulonephritis4986Other/Unknown4281DURATION of DIALYSIS (years)< 0.5	AGE GROUP (years)		
45.54 45 83 55.64 40 81 65.74 34 82 $75+$ 27 76 CAUSE of ESRDDiabetes mellitus 31 78 Hypertension 45 85 Glomerulonephritis 49 86 Other/Unknown 42 81 DURATION of DIALYSIS (years) < 0.5 21 58 $0.5-0.9$ 35 78 $1.0-1.9$ 39 85 $2.0-2.9$ 39 86 $3.0-3.9$ 45 84 $4.0+$ 44 87 MEAN spKt/V ≥ 1.2 39 82 < 1.2 32 73 MEAN Hgb (g/dL) ≥ 11 42 86 < 11 25 64 ACCESS TYPEAVF 47 87 AF Graft 40 85 Catheter 25 67	18-44	53	87
55-644081 $65-74$ 3482 $75+$ 2776CAUSE of ESRDDiabetes mellitus3178Hypertension4585Glomerulonephritis4986Other/Unknown4281DURATION of DIALYSIS (years)< 0.5	45-54	45	83
$65-74$ 34 82 $75+$ 27 76 CAUSE of ESRD 11 Diabetes mellitus 31 78 Hypertension 45 85 Glomerulonephritis 49 86 Other/Unknown 42 81 DURATION of DIALYSIS (years) < 0.5 21 < 0.5 21 58 $0.5-0.9$ 35 78 $1.0-1.9$ 39 85 $2.0-2.9$ 39 86 $3.0-3.9$ 45 84 $4.0+$ 44 87 MEAN spKt/V \geq 21.2 39 ≥ 1.2 39 82 < 1.2 32 73 MEAN Hgb (g/dL) \geq 64 ACCESS TYPE 47 87 AVF 47 87 AF Graft 40 85 Catheter 25 67	55-64	40	81
$75+$ 27 76 CAUSE of ESRDDiabetes mellitus 31 78 Hypertension 45 85 Glomerulonephritis 49 86 Other/Unknown 42 81 DURATION of DIALYSIS (years) < 0.5 21 58 $0.5-0.9$ 35 78 $1.0-1.9$ 39 85 $2.0-2.9$ 39 86 $3.0-3.9$ 45 84 $4.0+$ 44 87 MEAN spKt/V ≥ 1.2 39 82 < 1.2 32 73 MEAN Hgb (g/dL) ≥ 11 42 86 < 11 25 64 ACCESS TYPEAVF 47 87 AF Graft 40 85 Catheter 25 67	65-74	34	82
CAUSE of ESRD 78 Diabetes mellitus 31 78 Hypertension 45 85 Glomerulonephritis 49 86 Other/Unknown 42 81 DURATION of DIALYSIS (years) < 0.5 21 58 < 0.5 21 58 $0.5 - 0.9$ 35 78 $1.0 - 1.9$ 39 85 $2.0 - 2.9$ 39 86 $3.0 - 3.9$ 45 84 $4.0 +$ 87 MEAN spKt/V ≥ 1.2 39 82 < 1.2 32 73 MEAN Hgb (g/dL) ≥ 111 42 86 < 111 25 64 ACCESS TYPE AVF 47 87 AF Graft 40 85 Catheter 25 67 67 67	75+	27	76
Diabetes mellitus 31 78 Hypertension 45 85 Glomerulonephritis 49 86 Other/Unknown 42 81 DURATION of DIALYSIS (years) < 0.5 21 < 0.5 21 58 $0.5 - 0.9$ 35 78 $1.0 - 1.9$ 39 85 $2.0 - 2.9$ 39 86 $3.0 - 3.9$ 45 84 $4.0 +$ 44 87 MEAN spKt/V \geq 21.2 ≥ 1.2 39 82 < 1.2 32 73 MEAN Hgb (g/dL) \geq 64 ACCESS TYPE 47 87 AVF 47 87 AF Graft 40 85 Catheter 25 67	CAUSE of ESRD		
Hypertension4585Glomerulonephritis4986Other/Unknown4281DURATION of DIALYSIS (years) < 0.5 21 < 0.5 2158 $0.5 - 0.9$ 3578 $1.0 - 1.9$ 3985 $2.0 - 2.9$ 3986 $3.0 - 3.9$ 4584 $4.0 +$ 4487MEAN spKt/V $>$ ≥ 1.2 3982 < 1.2 3273MEAN Hgb (g/dL) $>$ ≥ 11 4286 < 11 2564ACCESS TYPEAVF4787AF Graft4085Catheter2567	Diabetes mellitus	31	78
Giomerulonephritis4986Other/Unknown4281DURATION of DIALYSIS (years) < 0.5 21 < 0.5 2158 $0.5 - 0.9$ 3578 $1.0 - 1.9$ 3985 $2.0 - 2.9$ 3986 $3.0 - 3.9$ 4584 $4.0 +$ 4487MEAN spKt/V \geq 2 ≥ 1.2 3982 < 1.2 3273MEAN Hgb (g/dL) \geq $=$ ≥ 11 4286 < 11 2564ACCESS TYPEAVF4787AF Graft4085Catheter2567	Hypertension	45	85
Other/Unknown4281DURATION of DIALYSIS (years) < 0.5 2158 < 0.5 21580.5-0.93578 $1.0-1.9$ 39852.0-2.93986 $2.0-2.9$ 3945844.0+87MEAN spKt/V ≥ 1.2 3982 < 1.2 73MEAN Hgb (g/dL) ≥ 11 4286 < 11 2564ACCESS TYPE AVF 4787AF Graft4085Catheter25676767	Glomerulonephritis	49	86
DURATION of DIALYSIS (years)< 0.5 2158 $0.5-0.9$ 3578 $1.0-1.9$ 3985 $2.0-2.9$ 3986 $3.0-3.9$ 4584 $4.0+$ 4487MEAN spKt/V ≥ 1.2 3982 < 1.2 3273MEAN Hgb (g/dL) ≥ 11 4286 < 11 2564ACCESS TYPEAVF4787AF Graft4085Catheter2567	Other/Unknown	42	81
< 0.5 21 58 $0.5 - 0.9$ 35 78 $1.0 - 1.9$ 39 85 $2.0 - 2.9$ 39 86 $3.0 - 3.9$ 45 84 $4.0 +$ 44 87 MEAN spKt/V ≥ 1.2 39 82 < 1.2 32 73 MEAN Hgb (g/dL) ≥ 11 42 86 < 11 25 64 ACCESS TYPE AVF 47 87 AF Graft 40 85 Catheter 25 67	DURATION of DIAL	YSIS (vears)	
0.5-0.9 35 78 $1.0-1.9$ 39 85 $2.0-2.9$ 39 86 $3.0-3.9$ 45 84 $4.0+$ 44 87 MEAN spKt/V 21.2 39 82 < 1.2 32 73 MEAN Hgb (g/dL) 211 42 86 < 11 25 64 ACCESS TYPE 47 87 AF Graft 40 85 Catheter 25 67	< 0.5	21	58
1.0-1.9 39 85 $2.0-2.9$ 39 86 $3.0-3.9$ 45 84 $4.0+$ 44 87 MEAN spKt/V 21.2 39 82 < 1.2 32 73 MEAN Hgb (g/dL) 211 42 86 < 11 25 64 ACCESS TYPEAVF 47 87 AF Graft 40 85 Catheter 25 67	0.5-0.9	35	78
2.0-2.939863.0-3.94584 $4.0+$ 4487MEAN spKt/V \geq ≥ 1.23982< 1.2	1.0-1.9	39	85
$3.0-3.9$ 45 84 $4.0+$ 44 87 MEAN spKt/V \geq ≥ 1.2 39 82 < 1.2 32 73 MEAN Hgb (g/dL) \geq ≥ 11 42 86 < 11 25 64 ACCESS TYPE 47 87 AVF 47 85 Catheter 25 67	2.0-2.9	39	86
$4.0+$ 44 87 MEAN spKt/V ≥ 1.2 39 82 < 1.2 32 73 MEAN Hgb (g/dL) ≥ 11 42 86 < 11 25 64 ACCESS TYPE 47 87 AVF 47 85 Catheter 25 67	3.0-3.9	45	84
MEAN spKt/V ≥ 1.2 39 82 < 1.2 32 73 MEAN Hgb (g/dL) ≥ 11 42 86 < 11 25 64 ACCESS TYPE $=$ $=$ AVF 47 87 AF Graft 40 85 Catheter 25 67	4.0+	44	87
$ \geq 1.2 \qquad 39 \qquad 82 \\ < 1.2 \qquad 32 \qquad 73 \\ MEAN Hgb (g/dL) \\ \geq 11 \qquad 42 \qquad 86 \\ < 11 \qquad 25 \qquad 64 \\ ACCESS TYPE \\ AVF \qquad 47 \qquad 87 \\ AF Graft \qquad 40 \qquad 85 \\ Catheter \qquad 25 \qquad 67 \\ \end{cases} $	MEAN spKt/V		
< 1.2 32 73 MEAN Hgb (g/dL) \geq 11 42 86 < 11 25 64 ACCESS TYPE 47 87 AVF 47 85 Catheter 25 67	≥ 1.2	39	82
MEAN Hgb (g/dL) ≥ 11 42 86 < 11 25 64 ACCESS TYPE 47 87 AVF 47 85 Catheter 25 67	< 1.2	32	73
≥ 11 42 86 < 11 25 64 ACCESS TYPE AVF 47 87 AF Graft 40 85 Catheter 25 67	MEAN Hgb (g/dL)		
< 11 25 64 ACCESS TYPE AVF 47 87 AF Graft 40 85 Catheter 25 67	≥11	42	86
ACCESS TYPE AVF 47 87 AF Graft 40 85 Catheter 25 67	< 11	25	64
AVF 47 87 AF Graft 40 85 Catheter 25 67	ACCESS TYPE		
AF Graft4085Catheter2567	AVF	47	87
Catheter 25 67	AF Graft	40	85
	Catheter	25	67

* Note: BCG/BCP = bromcresol green/bromcresol purple laboratory methods. Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Patients with higher mean hemoglobin and mean spKt/V values had a mean serum albumin $\ge 4.0/3.7$ g/dL (40/37 g/L) (BCG/BCP) compared to patients with lower mean hemoglobin and mean spKt/V values. More patients dialyzed with either an AVF or an AV graft compared to patients dialyzed with a catheter had a mean serum albumin $\ge 4.0/3.7$ g/dL (40/37 g/L) (BCG/BCP) (47% and 40% vs. 25% respectively) (TABLE 15).

Nationally, 39% of patients had mean serum albumin $\ge 4.0/3.7$ g/dL (40/37 g/L) (BCG/BCP) ranging from 31% to 45% among the 18 Networks; 81% of patients had mean serum albumin $\ge 3.5/3.2$ g/dL (35/32 g/L) (BCG/BCP) ranging from 77% to 85% among the 18 Networks. The percent of patients in each Network area, by gender, race, ethnicity, age group and cause of ESRD, with mean serum albumin $\ge 4.0/3.7$ g/dL (40/37 g/L) (BCG/BCP) is shown in Table 16.

Figure 42: Percent of adult in-center hemodialysis patients with mean serum albumin $\ge 4.0/3.7$ g/dL (BCG/BCP)* and $\ge 3.5/3.2$ g/dL (BCG/BCP), by race and gender, October–December 2003. 2004 ESRD CPM Project.

^{*} Note: BCG/BCP = bromcresol green/bromcresol purple laboratory methods.

Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10.

2. Findings for October–December 2003 compared to previous study periods

No clinically important changes or improvements were noted in the proportion of adult in-center hemodialysis patients with a serum albumin that met the outcome goal of \geq 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP) during October–December 2003 compared to previous study periods.

Figure 44 shows the percent of patients with mean serum albumin $\geq 4.0/3.7$ g/dL (40/37 g/L) (BCG/BCP) and the percent of patients with mean serum albumin values $\geq 3.5/3.2$ g/L (35/32 g/L) (BCG/BCP) during October–December 2003 compared to selected previous study periods.

Figure 43: Percent of adult in-center hemodialysis patients with mean serum albumin $\geq 4.0/3.7$ g/dL (BCG/BCP)* and $\geq 3.5/3.2$ g/dL (BCG/BCP), by age, October–December 2003. 2004 ESRD CPM Project.

* Note: BCG/BCP = bromcresol green/bromcresol purple laboratory methods.

Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10.

Figure 44: Percent of adult in-center hemodialysis patients with mean serum albumin $\geq 4.0/3.7$ g/dL (BCG/BCP)** and $\geq 3.5/3.2$ g/dL (BCG/BCP), October–December 2003 compared to selected previous study periods. 2004 ESRD CPM Project.

* Sixteen Network areas participated in the first ESRD Core Indicators Project assessment (October–December 1993); all Network areas participated in subsequent years.

** Note: BCG/BCP = bromcresol green/bromcresol purple laboratory methods.

Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10.

TABLE 16: Percent of adult in-center hemodialysis patients with mean serum albumin $\ge 4.0/3.7$ g/dL (BCG/BCP method)** by

PATIENT CHADACTEDISTIC									NETV	VORI									
URAKAU LEKISTIU	1	7	e	4	S	9	2	×	6	10	11	12	13	14	15	16	17	18	SU
ALL	32	40	33	35	33	40	37	43	40	45	37	34	40	43	34	31	42	41	39
GENDER																			
Men	34	49	34	37	43	50	39	49	43	53	40	39	47	54	40	40	46	42	44
Women	30	29	31	32	23	32	35	36	37	35	34	28	33	32	27	20	37	39	32
RACE																			
Black	33	42	28	42	35	41	41	47	38	51	39	40	45	44	33	*	34	42	41
White	31	36	37	31	27	40	34	34	42	40	36	30	34	42	35	31	37	40	36
ETHNICITY																			
Hispanic	38	48	39	*	*	*	36	*	*	42	*	*	*	45	36	33	50	41	42
Non-Hispanic	32	38	30	34	33	40	38	42	40	43	36	34	39	42	33	30	40	40	38
AGE GROUP (years)																			
18-44	46	62	39	52	58	50	58	57	52	62	55	51	52	51	35	46	56	58	53
45-54	36	45	46	42	29	48	39	50	40	53	43	39	42	50	57	39	54	42	45
55-64	32	36	32	42	36	37	40	42	45	52	41	29	40	48	28	31	46	38	40
65-74	29	35	29	27	31	37	32	41	38	27	41	25	40	36	32	29	30	37	34
75+	27	28	25	26	20	27	29	24	32	34	19	31	24	27	24	18	33	30	27
CAUSE OF ESRD																			
Diabetes Mellitus	24	32	26	31	23	27	29	35	34	40	30	25	32	35	34	22	36	29	31
Other Causes Combined	38	44	38	37	40	50	44	48	45	47	43	39	45	50	34	36	48	49	44

VI. ADULT PERITONEAL DIALYSIS PATIENTS

This section describes the findings for adult peritoneal dialysis patients for selected CPMs and other quality indicators related to adequacy of peritoneal dialysis, anemia management, and serum albumin. Each of these sections is further broken down into three parts:

(1) national findings for selected CPM results for October 2003–March 2004 (the serum albumin information is not considered a CPM for this report);

(2) a description of other quality indicators or data analysis; and

(3) a comparison of CPM and/or other indicators or find-

ings for October 2003–March 2004 and previous study periods.

A national random sample of adult (\geq 18 years) peritoneal dialysis patients who were alive on December 31, 2003, was selected (sample size=1,453). 1,377 patients (95%) were included in the sample for analysis.

A. ADEQUACY OF PERITONEAL DIALYSIS

1. CPM Findings for October 2003–March 2004

Data to assess three peritoneal dialysis adequacy CPMs were collected in 2004. The time period from which these data were abstracted was October 2003–March 2004. Tidal peritoneal dialysis patients (n=39) were excluded from the peritoneal dialysis adequacy CPM calculations.

Peritoneal Dialysis Adequacy CPM I — The patient's total solute clearance for urea and creatinine is measured routinely (defined for this report as at least once during the six-month study period).

<u>FINDING</u>: 86% of adult peritoneal dialysis patients had both a weekly Kt/V_{urea} and a weekly creatinine clearance measurement reported at least once during the six-month study period (FIG-URE 3).

Peritoneal Dialysis Adequacy CPM II — The patient's total solute clearance for urea (weekly Kt/V_{urea}) and creatinine (weekly creatinine clearance) is calculated in a standard way. (See Peritoneal Dialysis Adequacy CPM II in Appendix 1).

<u>FINDING</u>: 44% of adult peritoneal dialysis patients who had reported adequacy measurements documented in their chart at least once during the six-month study period had these reported measurements (Kt/V_{urea} and creatinine clearance) calculated in a standard way as described in Peritoneal Dialysis Adequacy CPM II in Appendix 1 (FIGURE 3).

Peritoneal Dialysis Adequacy CPM III — For patients on CAPD, the delivered peritoneal dialysis dose is a weekly Kt/V_{urea} of at least 2.0 and a weekly creatinine clearance of at least 60 L/week/1.73 m² OR there was evidence the dialysis prescription was changed if the adequacy measurements were below these thresholds during the six-month study period.

For CCPD patients (cycler patients with a daytime dwell), the delivered peritoneal dialysis dose is a weekly Kt/V_{urea} of at least 2.1 and a weekly creatinine clearance of at least 63 L/week/ 1.73 m² OR there was evidence the dialysis prescription was changed if the adequacy measurements were below these thresholds during the six-month study period.

For NIPD patients (cycler patients without a daytime dwell), the delivered peritoneal dialysis dose is a weekly Kt/V_{urea} of at least 2.2 and a weekly creatinine clearance of at least 66 L/week/ 1.73 m² OR there was evidence the dialysis prescription was changed if the adequacy measurements were below these thresholds during the six-month study period.

<u>FINDING</u>: 70% of CAPD patients had a mean weekly Kt/V_{urea} \geq 2.0 and a mean weekly creatinine clearance \geq 60 L/week/ 1.73 m² OR there was evidence the dialysis prescription was changed if the adequacy measurements were below these thresholds during the six-month study period (FIGURE 4).

<u>ALTERNATE FINDING:</u> 77% (156/203) of CAPD patients with a Peritoneal Equilibration Test (PET) result within 12 months of or during the study period met the revised 2000 NKF-K/DOQI thresholds for peritoneal dialysis adequacy (32) (a mean weekly Kt/V_{urea} \geq 2.0 and for high and high-average transporters, a weekly creatinine clearance \geq 60 L/week/1.73m², for low and low-average transporters, a weekly creatinine clearance \geq 50 L/weekly/ 1.73m², OR there was evidence the dialysis prescription was changed if the adequacy measurements were below these thresholds during the sixmonth study period).

<u>FINDING</u>: 65% of cycler patients with a daytime dwell (CCPD patients) had a mean weekly Kt/V_{urea} \geq 2.1 and a mean weekly creatinine clearance \geq 63 L/week/1.73 m² OR there was evidence the dialysis prescription was changed if the adequacy measurements were below these thresholds during the sixmonth study period (FIGURE 4).

<u>FINDING</u>: 62% of cycler patients without a daytime dwell (NIPD patients) had a mean weekly Kt/V_{urea} \geq 2.2 and a mean weekly creatinine clearance \geq 66 L/week/1.73 m² OR there was evidence the dialysis prescription was changed if the adequacy measurements were below these thresholds during the sixmonth study period (FIGURE 4).

2. Other Peritoneal Dialysis Adequacy Findings for October 2003-March 2004

There were 466 patients categorized as CAPD patients and 773 patients categorized as cycler patients during the study period. Tidal peritoneal dialysis patients (n=39) were excluded from the peritoneal dialysis adequacy analyses reported below. By using values that were abstracted from medical records of peritoneal dialysis patients, it was possible to calculate at least one of the adequacy measures (weekly Kt/V_{urea} or weekly creatinine clearance) for 1,151 (86%) of the 1,338 patients included for these analyses during the 2004 study period.

Table 17 depicts the percent of CAPD patients by transporter type with a mean calculated weekly Kt/V _{urea} and a mean calculated weekly creatinine clearance meeting recommended NKF-K/DOQI guidelines for those patients with sufficient data to calculate adequacy measures.

59% of cycler patients with a daytime dwell had a mean calculated weekly Kt/V_{urea} and 48% had a mean calculated weekly creatinine clearance that met recommended NKF-K/DOQI guide-lines during the 2004 study period (TABLE 18). 56% of cycler patients without a daytime dwell had a mean calculated weekly Kt/V_{urea} and 44% had a mean calculated weekly creatinine clearance that met recommended NKF-K/DOQI guidelines during the 2004 study period.

40% of patients (n=533) had one or more PET results within 12 months of or during the study period. The distribution of PET results is depicted in Figure 45.

43% of CAPD patients had a single prescription volume of 2,000 mL and 39% had a single prescription volume of 2,500 mL (FIG-URE 46).

33% of CAPD patients had a total prescription volume of 8,000 mL and another 33% had a total prescription volume of 10,000 mL (FIGURE 47).

Figure 46: Distribution of single dwell volumes for adult CAPD patients, October 2003-March 2004. 2004 ESRD CPM Project.

Figure 47: Distribution of 24-hour total infused dialysate volumes for adult CAPD patients, October 2003-March 2004. 2004 ESRD CPM Project.

30% of all cycler patients had a single nighttime dwell volume of 2500 mL; 27% had a single nighttime dwell volume of 2,000 mL (FIGURE 48). 43% of all cycler patients had a mean of four nighttime exchanges, 28% had a mean of 5 nighttime exchanges, and another 13% had a mean of 3 nighttime exchanges (FIG-URE 49).

10% (n = 77) of cycler patients did not have a daytime dwell. 39% of cycler patients with a daytime dwell had a mean single daytime dwell volume of 2,000 mL; 23% had a mean single daytime dwell volume of 2,500 mL (FIGURE 50). 54% of these patients had one daytime exchange, another 35% had two daytime exchanges (FIGURE 51).

by transporter type (4 nr. D/P Cr Katto), Oc	tober 2003–Marc	Ch 2004. 2004 E	SKD CFM Proj	ect.				
	Oct 2000-1	Mar 2001	Oct 2001-	Mar 2002	Oct 2002-M	ar 2003	Oct 2003-1	Aar 2004
Adequacy Measure	High-Avg/High*	Low/Low-Avg	High-Avg/High	Low/Low-Avg	High-Avg/High	Low/Low-Avg	High-Avg/High	Low/Low-Avg
Weekly Kt/V _{urea}								
% meeting NKF-K/DOQI^	75%	71%	73%	69%	74%	81%	59%	75%
mean (± SD)	2.35 (土 0.57)	2.35 (±0.58)	2.41 (± 0.71)	2.40 (± 0.69)	2.36 (± 0.59)	2.37 (±0.48)	2.24 (±0.67)	2.34 (± 0.64)
median	2.26	2.32	2.27	2.23	2.26	2.40	2.09	2.29
Weekly Creatinine Clearance (L/week/1.73 m^2)								
% meeting NKF-K/DOQI	76%	79%	73%	80%	66%	79%	70%	64%
mean $(\pm SD)$	83.6 (土 29.7)	73.0 (主 27.5)	79.9 (± 28.4)	77.5 (± 32.3)	80.1 (± 30.0)	72.9 (± 26.6)	78.1 (±27.8)	75.9 (土 28.4)
median	78.6	68.5	72.5	67.6	72.8	69.6	74.3	71.3
^ For CAPD patients, the delivered PD dose should be a	weekly Kt/V _{irea} ≥2.0 a	nd a weekly creatinir	ne clearance ≥ 60 L/	week/1.73m ² for high	-average and high			

transporters, and ≥ 50 L/week/1,73m² for low and low-average transp^{ures}. * Transporter type (4 hr. D/P Cr Ratio): Low = 0.34-0.49; Low-Average = 0.50-0.64; High-Average = 0.65-0.81; High = 0.82-1.03

TABLE 18: Percent of adult cycler patients with mean (\pm SD) weekly adequacy values meeting 2000 NKF-K/DOQI guidelines and median adequacy values, October 2003–March 2004. 2004 ESRD CPM Project.

	Oct 2000-	-Mar 2001	Oct 2001	1-Mar 2002	Oct 2002	-Mar 2003	Oct 2003-M	1ar 2004
Adequacy Measure	with daytime dwell	no daytime dwell						
Weekly Kt/V _{urea}								
% meeting NKF-K/DOQI^	64%	53%	66%	61%	64%	58%	59%	56%
mean (±SD)	2.33 (土 0.55)	2.33 (±0.73)	2.33 (± 0.55)	2.39 (± 0.70)	2.31 (±0.54)	2.53 (± 0.80)	2.29 (±0.60)	2.39 (± 0.73)
median	2.24	2.22	2.25	2.29	2.25	2.38	2.23	2.30
Weekly Creatinine Clearance (L/week/1.73M ²) % meeting NKF-K/DOQI mean (± SD) median	55% 71.9 (± 25.6) 65.7	61% 77.6 (± 31.0) 75.3	55% 71.0 (± 26.3) 65.7	53% 76.2 (± 31.8) 68.1	49% 66.5 (± 22.2) 62.3	56% 74.3 (± 33.0) 70.2	48% 67.5 (± 24.2) 62.5	44% 71.9 (土 30.7) 62.3

For nighttime cycler patients (no daytime dwell) (NIPD patients): KVV_{wea} 2.2.2; creatinine clearance 2.66 L/week/1.73m²

Figure 48: Distribution of mean single nighttime dwell volumes for all adult cycler patients, October 2003-March 2004. 2004 ESRD CPM Project.

Figure 49: Distribution of the mean number of nighttime exchanges for all adult cycler patients, October 2003-March 2004. 2004 ESRD CPM Project.

Figure 50: Distribution of mean single daytime dwell volumes for adult cycler patients with a daytime dwell, October 2003-March 2004. 2004 ESRD CPM Project.

Figure 51: Distribution of the mean number of daytime exchanges for adult cycler patients with a daytime dwell, October 2003-March 2004. 2004 ESRD CPM Project.

Figure 52: Percent of adult peritoneal dialysis patients meeting 1997 NKF-DOQI guidelines for weekly Kt/V_{urea} and weekly creatinine clearance (PD Adequacy CPM III). 2004 ESRD CPM Project.

3. CPM and other Findings for October 2003– March 2004 compared to previous study periods

The adequacy of peritoneal dialysis was reported for 86% of adult peritoneal dialysis patients at least once during the 2004 six-month study period, October 2003–March 2004 (PD Adequacy CPM I), compared to 82% during the 1999 study period, 83% during the 2000 study period, 85% during the 2001 study period, 86% during the 2002 study period and 88% during the 2003 study period. (FIGURE 3).

Although the percent of patients meeting NKF-K/DOQI thresholds for peritoneal dialysis adequacy (3) has increased from the 1999 study period, there was little change in the percent of patients meeting these thresholds from the 2001 study period to the 2004 study period (FIGURES 4, 52).

B. ANEMIA MANAGEMENT

1. CPM Findings for October 2003–March 2004

Data to assess three anemia management CPMs were collected in 2004. The time period from which these data were abstracted was October 2003–March 2004.

Anemia Management CPM I — The target hemoglobin is 11– 12 g/dL (110-120 g/L). Patients with a mean hemoglobin > 12 g/dL (120 g/L) and not prescribed Epoetin were excluded from analysis for this CPM.

<u>FINDING:</u> For the six-month study period, 39% of the peritoneal dialysis patients who met the inclusion criteria (n=1,251) had a mean hemoglobin 11–12 g/dL (110-120 g/L) during October 2003—March 2004.

Anemia Management CPM IIa — For all anemic patients (hemoglobin < 11 g/dL [110 g/L]) or patients prescribed Epoetin, the percent transferrin saturation and serum ferritin concentration are assessed (measured) at least two times during the sixmonth study period.

<u>FINDING:</u> 79% of the peritoneal dialysis patients who met the inclusion criteria (n=1,237) had at least two documented (measured) transferrin saturation values and at least two documented (measured) serum ferritin concentration values during October 2003–March 2004.

Anemia Management CPM IIb — For all anemic patients (hemoglobin < 11 g/dL [110 g/L]) or patients prescribed Epoetin, at least one serum ferritin concentration \geq 100 ng/mL and at least one transferrin saturation \geq 20% were documented during the six-month study period.

<u>FINDING</u>: 83% of the adult peritoneal dialysis patients who met the inclusion criteria (n=1237) had at least one documented transferrin saturation \ge 20% and at least one documented serum ferritin concentration \ge 100 ng/mL during October 2003–March 2004.

Anemia Management CPM III — All anemic patients (hemoglobin < 11 g/dL [110 g/L]) or patients prescribed Epoetin, with at least one transferrin saturation < 20% or at least one serum ferritin concentration < 100 ng/mL during the study period are prescribed intravenous iron; UNLESS the mean transferrin saturation was \geq 50% or the mean serum ferritin concentration was \geq 800 ng/ml; UNLESS the patient was in the first three months of dialysis and was prescribed a trial dose of oral iron.

<u>FINDING</u>: 29% of the peritoneal dialysis patients who met the inclusion criteria (n=475) were prescribed intravenous iron at least once during October 2003–March 2004.

2. Other Anemia Management Findings for October 2003-March 2004

The mean (± SD) hemoglobin for adult peritoneal dialysis patients in the sample was 12.0 (\pm 1.3) g/dL (120 [\pm 13] g/L). The distributions of mean hemoglobin values for all patients and by race are depicted in Figure 53. The mean hemoglobin values and the proportion of patients within different hemoglobin categories for gender, race, ethnicity, age, diagnosis, duration of dialysis, mean serum albumin level and weekly creatinine clearance are shown in Table 19. Nationally, 82% of patients had a mean hemoglobin \geq 11 g/dL (110 g/L) (FIGURE 8). Significantly more Whites and patients older than 45 years had a mean hemoglobin \geq 11 g/dL (110 g/L) compared to Blacks, and younger patients (TABLE 19). A larger percentage of patients with higher mean serum albumin and weekly creatinine clearance had a mean hemoglobin \geq 11 g/dL (110 g/L) compared to patients with lower mean serum albumin and weekly creatinine clearance values. Nationally, 68% of patients prescribed Epoetin had a mean hemoglobin 11-12.9 g/dL (110-129 g/L).

The prevalence of patients with mean hemoglobin < 10 g/dL (100 g/L) was 5% (FIGURE 53, TABLE 19). The prevalence of patients with mean hemoglobin < 10 g/dL (100 g/L) was significantly higher in Blacks compared to Whites, for patients 18-44 years old compared to older patients, and in patients with lower mean serum albumin and creatinine clearance values compared to patients with higher mean serum albumin and creatinine clearance values (TABLE 19).

Figure 53: Distribution of mean hemoglobin values for adult peritoneal dialysis patients in the US, by race, October 2003–March 2004. 2004 ESRD CPM Project.

Hemoglobin (g/dL)

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

TABLE 19: Mean hemoglobin values (g/dL) for adult peritoneal dialysis patients, by patient characteristics, October 2003-March 2004. 2004 ESRD CPM Project.

Patient	Mean hemo-	Percent of patients with hemoglobin values					
Characteristic	globin (g/dL)	< 10	10-10.9	11-11.9	12-12.9	13-13.9	14+
TOTAL	12.0	5	13	34	30	12	6
GENDER							
Men	12.0	5	12	34	31	13	6
Women	12.0	6	14	35	29	12	5
RACE							
American Indian/							
Alaska Native	12.0	*	*	*	*	*	*
Asian/Pacific							
Islander	11.8	*	19	39	25	*	*
Black	11.8	8	14	39	23	11	6
White	12.1	4	12	31	33	14	6
Other/Unknown	12.0	*	*	39	31	*	*
ETHNICITY							
Hispanic	11.9	*	16	33	32	9	*
Non-Hispanic	12.0	5	12	34	30	13	6
AGE GROUP (vears)							
18-44	11.8	11	15	35	21	9	9
45-54	12.0	4	14	34	32	11	5
55-64	12.0	*	12	35	32	14	4
65-74	12.2	*	10	32	36	17	4
75+	12.1	*	11	35	31	13	*
CAUSE of ESRD							
Diabetes Mellitus	12.0	4	12	37	29	14	4
Hypertension	12.0	5	14	34	27	12	7
Glomerulonephritis	12.0	*	15	31	34	11	*
Other/Unknown	12.0	7	11	32	31	12	7
DURATION of							
DIALYSIS (years)							
< 0.5	12.0	*	13	34	24	18	6
0.5-0.9	12.1	6	9	31	34	14	7
1.0-1.9	12.0	4	13	36	29	13	6
2.0-2.9	12.0	*	9	44	28	10	5
3.0-3.9	12.0	*	18	33	29	12	*
4.0 +	11.9	8	15	29	33	10	5
MEAN SERUM							
ALBUMIN (g/dL)							
≥ 3.5/3.2							
(BCG/BCP)^	12.1	4	11	33	31	13	7
< 3.5/3.2							
(BCG/BCP)	11.8	7	16	36	27	11	3
MEAN WEEKLY							
CREATININE							
CLEARANCE							
(L/WEEK/1.73m ²)							
≥60	12.0	3	11	37	30	14	5
<60	11.8	6	15	34	30	9	5

Note: Percentages may not add up to 100% due to rounding.

^BCG/BCP = bromcresol green/bromcresol purple laboratory methods.

*Value suppressed because $n \le 10$.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10. Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10. The mean (\pm SD) transferrin saturation for the patients in this sample was 29.9 (\pm 10.7)% and 85% of patients had mean transferrin saturation \geq 20%. The mean (\pm SD) serum ferritin concentration was 453 (\pm 405) ng/mL, with 88% of patients having a mean serum ferritin concentration \geq 100 ng/mL. 48 patients (3% of patients) had both a mean transferrin saturation < 20% and a mean serum ferritin concentration < 100 ng/mL.

88% of the patients in the sample for analysis were prescribed Epoetin during the six-month study period. Epoetin was prescribed 91% of the time when the mean hemoglobin values were < 10 g/dL (100 g/L), 98% of the time when the mean hemoglobin values were between 10-10.9 g/dL (100-109 g/L), 94% of the time when mean hemoglobin values were between 11-11.9 g/dL (110-119 g/L) 92% of the time when mean hemoglobin values were between 12-12.9 g/dL (120-129 g/L), 74% of the time when mean hemoglobin values were between 13-13.9 g/dL (130-139 g/L) and 39% of the time when mean hemoglobin values were 14 g/dL (140 g/L) or greater.

Within the subset of patients who were prescribed Epoetin, 98% were prescribed Epoetin by the SC route; 7% were prescribed Epoetin by the IV route (groups not mutually exclusive). The mean (\pm SD) weekly Epoetin dose for patients prescribed Epoetin by the SC route was 155.7 (\pm 163.7) units/kg/week; by the IV route was 177.5 (\pm 150.1) units/kg/week.

Iron use was assessed during this study period. Iron by either the oral or IV route was prescribed at least once during the six months for 57% of the patients in this sample, and three times over the six-month period for 33% of the patients. Of the patients prescribed iron, 69% were prescribed oral iron and 40% were prescribed IV iron (not mutually exclusive categories). Among those patients with mean transferrin saturation < 20% and mean serum ferritin concentration < 100 ng/mL (n=48), 73% were prescribed either oral or IV iron at least once during the six months, and 52% three times over the six-month study period.

3. CPM and other Findings for October 2003– March 2004 compared to previous study periods

The percent of peritoneal dialysis patients with mean hemoglobin \geq 11 g/dL (110 g/L) increased from 55% to 82% from the 1998 to the 2004 study periods (FIGURE 8). This improvement was noted for both Black patients (from 38% to 79%) and for White patients (63% to 84%) (FIGURE 54). The percent of adult (aged \geq 18 years) peritoneal dialysis patients with mean hemoglobin < 10 g/dL (100 g/L) decreased from 18% in the 1998 study period to 5% in the 2004 study period. The mean (\pm SD) hemoglobin increased from 11.9 (\pm 1.3) g/dL (119 [\pm 13] g/L) during the 2003 study period to 12.0 (\pm 1.3) g/dL (120 [\pm 13] g/L) during the 2004 study period (FIGURE 9). The distribution of mean hemoglobin values over these four study periods was not significantly different by modality (CAPD vs. Cycler).

Figure 55 depicts the trend in Epoetin dosing from the 1998 study period to the 2004 study period, with an increasing mean weekly Epoetin dose (units/kg/week) for patients prescribed Epoetin in lower hemoglobin categories. IV doses were generally larger than SC doses (data not displayed due to small cell sizes).

Figure 54: Percent of adult peritoneal dialysis patients with mean hemoglobin ≥ 11 g/dL, by race, October 2003–March 2004 compared to previous study periods. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Figure 55: Mean weekly Epoetin dose (units/kg/week) by hemoglobin category for adult peritoneal dialysis patients prescribed Epoetin, October 2003-March 2004 compared to previous study periods. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Note: Route of administration was not collected in 1998.

The distribution of mean transferrin saturation values (%) and mean serum ferritin concentrations (ng/mL) was similar for the November 1996–April 1997 through the October 2003-March 2004 study periods.

Figure 56 depicts the status of iron stores for the sampled patients for study period 2004 compared to selected previous study periods. Overall, 23% of patients were prescribed IV iron during the 2004 study period compared to 10% during the 1997 study period. 3% of patients had a mean transferrin saturation < 20% and mean serum ferritin concentration < 100 ng/mL during the 2004 study period compared to 9% during the 1997 study period.

Figure 56: Percent of adult peritoneal dialysis patients with specific anemia management indicators, October 2003-March 2004 compared to selected previous study periods. 2004 ESRD CPM Project

C. SERUM ALBUMIN

1. CPM Findings for October 2003–March 2004

Because serum albumin is not considered to be an official CPM for this project, there are no CPM findings to report for this section.

2. Other Serum Albumin Findings for October 2003–March 2004

The mean (± SD) serum albumin value for peritoneal dialysis patients whose value was determined by the BCG method (n=1,267) was 3.6 (± 0.5) g/dL (36 [± 5] g/L) and by the BCP method (n=109) was 3.3 (± 0.5) g/dL (33 [± 5] g/L). A serum albumin of \geq 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP) is the outcome goal. Nationally, 20% of patients had a mean serum albumin \geq 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP). 63% of patients had a mean serum albumin \geq 3.5/3.2 g/dL (35/32 g/L) by the BCG/BCP method (TABLE 20).

The percent of patients with mean serum albumin values \geq 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP) by gender, race, ethnicity, age, diagnosis, duration of dialysis, and selected clinical parameters is shown in Table 20. The percent of patients meeting the mean serum albumin outcome goal tended to be higher for men compared to women, for Hispanics compared to non-Hispanics, for patients 18-44 years compared to older patients, and for patients with causes of their ESRD other than diabetes mellitus compared to patients with diabetes mellitus as the cause (TABLE 20).

3. Findings for October 2003–March 2004 compared to previous study periods

Figure 57 shows the percent of patients with mean serum albumin \geq 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP) and the percent of patients with mean serum albumin \geq 3.5/3.2 g/dL (35/32 g/L) (BCG/BCP) during the 2004 study period compared to previous study periods.

Although not consistent, there has been slight improvement in the proportion of adult peritoneal dialysis patients achieving a mean serum albumin of \geq 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP) from the 1995 study period to the 2004 study period.

Figure 57: Percent of adult peritoneal dialysis patients with mean serum albumin $\geq 4.0/3.7$ g/dL (BCG/BCP)* and $\geq 3.5/3.2$ g/dL (BCG/BCP), October 2003–March 2004 compared to previous study periods. 2004 ESRD CPM Project.

TABLE 20: Percent of adult peritoneal dialysis patients with
mean serum albumin values $\geq 4.0/3.7$ g/dL (BCG/BCP)^ and
\geq 3.5/3.2 g/dL (BCG/BCP) in the US, by patient characteristics,
October 2003-March 2004. 2004 ESRD CPM Project.

PatientPercent of PCharacteristic≥	atients with M 4.0/3.7 g/dL	Aean Serum Albumin ≥ 3.5/3.2 g/dL
TOTAL	20	63
GENDER Men Women	22 17	67 59
RACE American Indian/ Alaska Native Asian/Pacific Islander Black White Other/Unknown	* 36 20 18 29	* 76 62 63 55
ETHNICITY Hispanic Non-Hispanic	28 18	68 62
AGE GROUP (years) 18-44 45-54 55-64 65-74 75+	34 20 15 13 *	75 67 59 55 51
CAUSE of ESRD Diabetes mellitus Hypertension Glomerulonephritis Other/Unknown	11 20 31 25	53 67 69 70
DURATION of DIALYSIS (years) < 0.5 0.5-0.9 1.0-1.9 2.0-2.9 3.0-3.9 4.0+	20 21 19 18 22 20	63 69 61 61 65 62
$MEAN Hgb (g/dL) \geq 11 < 11$	20 18	65 52
MEAN WEEKLY CREATININE CLEARANCE $(L/week/1.73m^{2})$ ≥ 60 < 60	19 21	62 67
MODALITY CAPD Cyclers with daytime dwell Cyclers with no daytime dwell	20 21 17	65 64 62

^ BCG/BCP = bromcresol green/bromcresol purple laboratory methods.

* Value suppressed because $n \le 10$.

Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

VII. PEDIATRIC IN-CENTER HEMODIALYSIS PATIENTS

All patients aged < 18 years identified as receiving in-center hemodialysis on December 31, 2003 were included in this study (n=809). 678 patients (84%) of this group met the case definition and were included in the sample for analysis. (See footnote to Table 5 on page 11 for case definition).

At this time, CPMs have not been developed for the pediatric age group. Therefore, the pediatric analysis is presented independently from the adult analysis.

This section describes the findings for pediatric (aged < 18 years) in-center hemodialysis patients for core indicators related to urea clearance, vascular access, anemia management and serum albumin. Each subsection is further broken down into two parts:

(1) national findings for selected core indicators for October-December 2003;

(2) a comparison of core indicator results or findings for October-December 2003 to previous study periods separately for patients 0 to < 12 (n=142) and 12 to < 18 years(n=536).

A. CLEARANCE

Findings for October–December 2003 (for patients < 18 years)

The percent of patients in the sample for analysis with at least one calculated spKt/V measure available (n=653) who had a mean spKt/V \ge 1.2 in the last quarter of 2003 was 86%. The mean (\pm SD) delivered calculated, single session spKt/V of all pediatric in-center hemodialysis patients in the sample for analysis in the last quarter of 2003 was 1.55 (\pm 0.32) (FIGURE 58). The distribution of spKt/V values for these patients is shown in Figure 58. The spKt/V was calculated using the Daugirdas II method; one blood sample was obtained post-dialysis reflecting a single pool distribution (26). The mean (\pm SD) delivered calculated URR for this population was 72.0% (\pm 8.0%). 84% of patients had a mean delivered calculated URR \ge 65%.

Figure 58: Distribution of mean delivered calculated, single session spKt/V values for all pediatric (aged <18 years) incenter hemodialysis patients, by age group, October-December 2003. 2004 ESRD CPM Project.

TABLE 21: Mean delivered calculated, single session spKt/V for all pediatric (aged < 18 years) in-center hemodialysis patients and percent of patients with mean spKt/V \ge 1.2, by patient characteristics, October-December 2003. 2004 ESRD CPM Project.

Patient Characteristics	Mean spKt/V	% spKt/V ≥ 1.2
TOTAL	1.55	86
GENDER		
Males	1.50	84
Females	1.62	88
RACE		
American Indian/		
Alaska Native	*	*
Asian/Pacific Islander	1.51	85
Black	1.52	85
White	1.58	86
Other/Unknown	1.52	89
FTHNICITY		
Hispanic	1 53	83
Non-Hispanic	1.56	88
	1.00	00
AGE GROUP (years)	1.50	0.0
0-4	1.56	88
5-9	1.05	91
10-14	1.50	83
15 10 < 18	1.52	65
DIALYSIS SESSION LENGTH (mi	inutes)	
<180	1.41	68
180-209	1.48	83
210-239	1.61	92
240+	1.68	93
DURATION of DIALYSIS (years)		
< 0.5	1.41	68
0.5-0.9	1.49	85
1.0-1.9	1.57	91
2.0-2.9	1.63	93
3.0-3.9	1.69	97
4.0+	1.64	92
QUINTILE POST-DIALYSIS BOD	Y WEIGHT (kg))
4.8-30.3	1.64	94
30.4-41.4	1.61	90
41.5-50.0	1.60	92
50.1-61.7	1.51	84
61.8-185.1	1.40	70
ACCESS TYPE		
AV Fistula	1.59	90
AV Graft	1.63	91
Catheter	1.52	83
MEAN Hgb (g/dL)		
≥ 11	1.56	89
< 11	1.54	79
IVIEAN SEKUWI ALBUMIIN (g/dL) > 3.5/3.2 (RCC/RCD)A	1 56	Q Q
$\leq 3.5/3.2$ (BCC/BCP) $\geq 3.5/3.2$ (BCC/BCD)	1.30	00 79
< 3.3/3.2 (DCU/DCP)	1.31	/0

*Value suppressed because $n \leq 10$.

^BCG/BCP = bromcresol green/bromcresol purple laboratory methods. Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10. Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10.

*Value suppressed because $n \le 10$

The mean spKt/V values and the percent of patients with mean spKt/V \ge 1.2, for all patients by gender, race, ethnicity, age, duration of dialysis, quintile of post-dialysis body weight, access type, and mean hemoglobin and serum albumin categories, are shown in Table 21.

A higher proportion of patients dialyzing six months or longer compared to patients dialyzing less than six months had a mean spKt/V \geq 1.2 (91% vs. 68%), as did patients in the lowest quintile of post-dialysis body weight compared to patients in the highest quintile (94% vs. 70%), patients with dialysis sessions 240 minutes or longer compared to patients with dialysis sessions less than 180 minutes (93% vs. 68%), patients with a mean hemoglobin \geq 11 g/dL compared to patients who did not meet that target (89% vs. 79%), and patients with a mean serum albumin \geq 3.5/3.2 g/dL (35/32 g/L) (BCG/BCP) compared to patients who did not meet that target (88% vs. 78%).

The mean (\pm SD) time spent on dialysis per dialysis session was 204 (\pm 31) minutes. The mean time spent on dialysis was longer for males compared to females (207 minutes vs. 202 minutes), Blacks compared to Whites (209 minutes vs. 203 minutes), for patients aged 16 to < 18 years compared to patients aged 12 to 15 years and 0 to11 years (210 minutes vs. 205 and 193 minutes respectively), for patients dialyzing six months or longer compared to patients dialyzing less than six months (207 minutes vs. 196 minutes), for patients in the highest quintile of post-dialysis body weight compared to those patients dialyzed with an AVF compared to those patients with an AV graft or catheter access (210 minutes vs. 208 minutes and 201 minutes, respectively).

2. Findings for October-December 2003 compared to previous study periods

a. Findings for patients 0 to < 12 years

The mean (± SD) delivered spKt/V for patients aged 11 years or younger decreased from 1.64 (± 0.32) in October-December 2001 to 1.59 (± 0.31) in October-December 2003. The percent of these patients receiving dialysis with a mean delivered spKt/V \ge 1.2 decreased from 91% in late 2001 to 88% in late 2003. This decrease occurred for Black and White males and for Black females (FIGURES 59, 60).

Figure 59: Percent of all pediatric (aged 0 to < 12 years) male in-center hemodialysis patients with mean delivered calculated, single session $spKt/V \ge 1.2$, by race, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

b. Findings for patients 12 to < 18 years

The mean (\pm SD) delivered spKt/V for patients aged 12 to < 18 years increased from 1.47 (\pm 0.38) in October-December 1999 to 1.54 (\pm 0.32) in October-December 2003. The percent of these patients receiving dialysis with a mean delivered spKt/V \ge 1.2 increased from 79% in late 1999 to 85% in late 2003. This improvement occurred for Black and White males and for Black females (FIGURES 61, 62).

There was very little change in dialysis session length from late 1999 to late 2003.

Figure 61: Percent of all pediatric (aged 12 to < 18 years) male in-center hemodialysis patients with mean delivered calculated, single session spKt/V \ge 1.2, by race, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

Figure 62: Percent of all pediatric (aged 12 to < 18 years) female in-center hemodialysis patients with mean delivered calculated, single session $spKt/V \ge 1.2$, by race, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

B. VASCULAR ACCESS

1. Findings for October-December 2003 (for patients < 18 years)

27% of patients were dialyzed with an AV fistula (AVF), 12% with an AV graft, and 60% with a catheter during October-December 2003 (TABLE 22). The percent of patients with an AVF, AV graft and catheter by selected patient characteristics is shown in Table 22. Opportunities for improvement in the use of AVF exist for all groups, in particular, for patients dialyzing less than six months.

TABLE 22: Vascular access type for all pediatric (aged < 18 years) in-center hemodialysis patients on their last hemodialysis session during October-December 2003, by selected patient characteristics. 2004 ESRD CPM Project.

Patient Characteristics	Percent of Patients with				
	AV Fistula	AV Graft	Catheter		
TOTAL	27	12	60		
GENDER					
Males	31	12	58		
Females	23	13	64		
RACE					
American Indian/					
Alaska Native	*	*	*		
Asian/Pacific Islander	*	*	90		
Black	30	18	52		
White	27	9	63		
Other/Unknown	23	*	65		
ETHNICITY					
Hispanic	27	9	64		
Non-Hispanic	28	14	59		
AGE GROUP (years)					
0-4	*	*	100		
5-9	*	*	90		
10-14	23	14	64		
15 to <18	36	14	50		
DURATION of DIALYSIS	(years)				
< 0.5	12	*	86		
0.5-0.9	24	10	66		
1.0-1.9	34	*	57		
2.0-2.9	34	*	53		
3.0-3.9	38	*	48		
4.0+	32	25	43		

NOTE: Percentages may not add up to 100% due to rounding. *Value suppressed because $n \le 10$.

The mean (± SD) delivered blood pump flow rate normalized for body surface area (BSA) 60 minutes into the dialysis session was 375 (± 92) mL/min/1.73m² for patients dialyzed with an AVF, 377 (± 82) mL/min/1.73m² for patients dialyzed with an AV graft, and 333 (± 116) mL/min/1.73m² for patients with a catheter access during October-December 2003 (FIGURE 63).

Figure 63: Distribution of mean delivered blood pump flow rates normalized for BSA 60 minutes into the dialysis session for all pediatric (aged < 18 years) in-center hemodialysis patients by access type, October-December 2003. 2004 ESRD CPM Project.

* Values suppressed because $n \le 10$.

NOTE: Actual blood flow delivered to the dialyzer may be lower than the prescribed pump blood flow (27). This is particularly true for catheters where differences of 25% or more may exist between delivered and prescribed blood flow to the dialyzer at prescribed blood pump flow rates of 400 mL/min or more (28).

408 (60%) patients had a catheter as their current access in late 2003. In patients who had catheters for hemodialysis access, no AVF or AV graft was planned for 45% of the patients, another 29% had no AVF or AV graft created at the end of 2003, and an AVF or AV graft had been created but was not ready to cannulate for 15% (TABLE 23). 3% of patients were not candidates for AVF or AV graft placement as all sites had been exhausted.

Table 23: Reasons for catheter placement in all pediatric (aged< 18 years) in-center hemodialysis patients using catheters on</td>their last hemodialysis session during October-December 2003.2004 ESRD CPM Project.

Reason	n (%)
TOTAL	408 (100)
No fistula or graft surgically planned Patient size too small for AV fistula/graft Patient preference Renal transplantation scheduled Physician preference Peripheral vascular disease	185 (45) 82 41 37 39 *
No fistula or graft surgically created at this time	120 (29)
Fistula or graft maturing, not ready to cannulate	60 (15)
Temporary interruption of fistula or graft due to clotting or revisions	18 (4)
All fistula or graft sites in this patient's body have been exhausted	12 (3)
Other	13 (3)

NOTE: Percentages may not add up to 100% due to rounding. *Value suppressed because $n \le 10$.

47% of patients (n=320) were dialyzed with a chronic catheter, defined as the continuous use of a catheter 90 days or longer, during October-December 2003.

52% of patients (139/267) with an AVF or an AV graft had their access routinely monitored for stenosis. (See Appendix 1 for a complete description of the types of stenosis monitoring). Within this subset of patients, 53% were monitored with dynamic venous pressure, 27% with the dilution technique, 19% with static venous pressure, and 15% had other types of monitoring (groups not mutually exclusive).

2. Findings for October-December 2003 compared to previous study periods

a. Findings for patients 0 to < 12 years

A higher percent of patients aged 11 years or younger was dialyzed with an AVF in late 2003 compared to late 2001 (10% vs. 6%) (FIGURE 64). A higher percent of patients was dialyzed with a catheter in late 2003 compared to late 2001 (83% vs. 80%) (FIGURE 64). There was little change in the percent of patients dialyzed with a chronic catheter for 90 days or longer from late 2001 to late 2003 (68% in 2001 and 69% in 2003).

Figure 64: Vascular access type for pediatric (aged 0 to < 12 years) in-center hemodialysis patients on their last hemodialysis session during the study period, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

*Chronic catheter use defined as continous catheter use 90 days or longer.

b. Findings for patients 12 to < 18 years

A lower percent of patients 12 to < 18 years was dialyzed with an AVF in late 2003 compared to late 1999 (32% vs. 37%, respectively) (FIGURE 65). A higher percent of patients was dialyzed with a catheter in late 2003 compared to late 1999 (54% vs. 41%, respectively).

23% of patients were dialyzed with a chronic catheter continuously for 90 days or longer during October-December 1999 and 41% during October-December 2003 (FIGURE 65).

Figure 65: Vascular access type for pediatric (aged 12 to < 18 years) in-center hemodialysis patients on their last hemodialysis session during the study period, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

*Chronic catheter use defined as continous catheter use 90 days or longer.

C. ANEMIA MANAGEMENT

1. Findings for October-December 2003 (for patients < 18 years)

The mean hemoglobin for all patients in the sample was 11.4 (\pm 1.6) g/dL (114 [\pm 16] g/L) (FIGURE 12). The distributions of mean hemoglobin values for all patients, and by race, are shown in Figure 66. The mean hemoglobin values and distribution of hemoglobin values by gender, race, ethnicity, age, diagnosis, duration of dialysis, access type, and mean spKt/V and serum albumin levels are shown in Table 24.

Figure 66: Distribution of mean hemoglobin values (g/dL) for all pediatric (aged < 18 years) in-center hemodialysis patients, by race, October-December 2003. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

The percent of patients with mean hemoglobin < 9 g/dL (90 g/L) was 9%. The percent of patients with mean hemoglobin < 10 g/dL (100 g/L) was 17%. The prevalence of patients with mean hemoglobin < 10 g/dL (100 g/L) was higher in patients dialyzing less than six months compared to those patients dialyzing six months or longer (30% vs. 14%, respectively), and higher in patients with a catheter access compared to patients dialyzed with an AVF or an AV graft (23% vs. 8% and 11%, respectively). A higher percent of patients with a mean serum albumin < 3.5/3.2 g/dL (35/32 g/L) (BCG/BCP) compared to patients with higher serum albumin values had a mean hemoglobin < 10 g/dL (100 g/L) (38% vs. 12%).

TABLE 24: Mean hemoglobin values (g/dL) and distribution of hemoglobin values for all pediatric (aged < 18 years) in-center hemodialysis patients, by patient characteristics, October-December 2003. 2004 ESRD CPM Project.

Patient	Mean Percent of patients hemo- dobin			with ues				
	(g/dL)	< 9-	9- 9.9	10- 10.9	11- 11.9	12- 12.9	13- 13.9	14+
TOTAL	11.4	9	8	16	26	27	10	3
GENDER Males Females	11.5 11.2	7 13	8 7	16 16	27 25	25 28	12 9	4 *
RACE American Indian/ Alaska Native Asian/Pacific	*	*	*	*	*	*	*	*
Islander Black White Other/Unknown	10.9 11.4 11.4 11.8	* 9 10 *	* 9 7 *	* 14 17 *	* 26 26 29	* 30 26 *	* 9 10 *	* * 4 *
ETHNICITY Hispanic Non-Hispanic	11.4 11.4	12 8	5 9	15 17	29 25	24 28	12 10	* 3
AGE GROUP (years) 0-4 5-9 10-14 15 to < 18	11.0 10.9 11.3 11.6	* * 10 8	* * 11 6	* 29 13 15	* 25 30 24	* * 23 31	* * 11 11	* * * 5
DURATION of DIALYSIS (years) < 0.5 0.5-0.9 1.0-1.9 2.0-2.9 3.0-3.9 4.0+	10.9 11.8 11.5 11.8 11.5 11.3	18 * * * 8	11 * * * 10	18 13 19 15 * 19	23 21 25 28 40 30	21 33 32 29 30 20	8 15 10 * 10	* * * * *
ACCESS TYPE AV Fistula AV Graft Catheter	11.9 11.8 11.1	* * 13	* * 10	15 * 18	25 26 27	32 38 22	15 * 9	* *
MEAN spKt/V ≥ 1.2 < 1.2	11.5 11.0	7 18	7 *	15 20	27 22	28 14	10 13	4 *
MEAN SERUM ALBUMIN (g/dL) ≥ 3.5/3.2 (BCG/BCP)^ < 3.5/3.2 (BCG/BCP)	11.6 10.5	7 22	6 17	15 21	28 19	29 16	12	4

* Value suppressed because $n \le 10$.

^ BCG/BCP = bromcresol green/bromcresol purple laboratory methods.

Note: Percentages may not add up to 100% due to rounding.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10.

67% of patients had a mean hemoglobin \ge 11 g/dL (110 g/L). The percent of patients with mean hemoglobin \ge 11 g/dL (110 g/L) by selected patient characteristics is shown in Figure 67.

Figure 67: Percent of all pediatric (aged < 18 years) in-center hemodialysis patients with mean hemoglobin ≥ 11 g/dL, by selected patient characteristics and clinical parameters, October-December 2003. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10. Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10.

95% of patients were prescribed Epoetin during the study period. Of the patients prescribed Epoetin, 93% were prescribed Epoetin by the IV route; and 9% by the SC route (groups not mutually exclusive). The mean (\pm SD) weekly Epoetin dose for patients prescribed Epoetin by the IV route was 368.6 (\pm 353.6) units/kg/ week; by the SC route, 246.3 (\pm 249.5) units/kg/week.

The mean (± SD) transferrin saturation for these patients was 28.8 (± 14.2) %. 73% of patients had a mean transferrin saturation \ge 20%. The mean (± SD) serum ferritin concentration was 440.7 (± 475.2) ng/mL. 78% of patients had a mean serum ferritin concentration \ge 100 ng/mL. 13% (n=91) of patients had a mean serum ferritin concentration > 800 ng/mL during the study period. 7% (n=46) of patients had a mean transferrin saturation < 20% and a mean serum ferritin < 100 ng/mL.

78% of patients were prescribed either IV or oral iron at least once during the three-month study period. The percent of patients with IV iron prescribed was 69%. The mean administered IV iron dose was 251.0 (\pm 195.3) mg/month. The mean administered IV iron dose per kg per month was 6.24 (\pm 5.21) mg/kg/ month. For the subset of patients with both mean transferrin saturation < 20% and mean serum ferritin concentration < 100 ng/mL (n=46 or 7% of patients), only 67% were prescribed IV iron at least once during the three-month study period.

2. Findings for October-December 2003 compared to previous study periods (for patients < 18 years)

a. Findings for patients 0 to < 12 years

The mean hemoglobin (± SD) for patients aged 11 years or younger remained the same 11.0 (\pm 1.5) g/dL (110 [\pm 15] g/L) from late 2001 to late 2003. 53% of patients had a mean hemoglobin \geq 11 g/dL (110 g/L) in late 2001 and 54% of patients had a mean hemoglobin ≥ 11 g/dL (110 g/L) in late 2003 (FIGURES 68, 69). 21% of patients aged 11 years or younger had a mean hemoglobin < 10g/dL (100 g/L) in late 2003 compared to 24% in late 2001 and 33% in late 2002. Iron management indicators for pediatric patients < 12 years are shown in Figure 70.

Figure 68: Percent of pediatric (aged 0 to < 12 years) in-center hemodialysis patients with mean hemoglobin ≥ 11 g/dL, by gender, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Figure 69: Percent of pediatric (aged 0 to < 12 years) in-center hemodialysis patients with mean hemoglobin ≥ 11 g/dL, by race, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

20 10

> Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

b. Findings for patients 12 to < 18 years

The mean (± SD) hemoglobin from late 1999 to late 2003 for patients 12 to < 18 years increased from 11.0 (\pm 1.6) g/dL (110 [± 16] g/L) to 11.5 (±1.6) g/dL (115 [± 16] g/L). The percent of these patients with a mean hemoglobin \geq 11 gm/dL (110 g/L) increased from 55% to 70% (FIGURES 71, 72). This improvement occurred for both male and female patients and for Whites and Blacks (FIGURES 71, 72).

Figure 71 : *Percent of pediatric (aged 12 to < 18 years) in*center hemodialysis patients with mean hemoglobin ≥ 11 g/dL. by gender, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

56

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

center hemodialysis patients with specific anemia management indicators, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project. 100

Figure 70: Percent of pediatric (aged 0 to < 12 years) in-

Figure 72: Percent of pediatric (aged 12 to < 18 years) incenter hemodialysis patients with mean hemoglobin ≥ 11 g/dL, by race, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

In addition to the improvement in the percent of patients with mean hemoglobin \geq 11 g/dL (110 g/L), there was also a decrease in the percent of patients with mean hemoglobin < 10 g/dL (100 g/L). In October-December 1999, 26% of Black patients and 21% of White patients had a mean hemoglobin < 10 g/dL (100 g/L), while in October-December 2003, 19% of Black patients and 15% of White patients had a mean hemoglobin < 10 g/dL (100 g/L).

Figure 73 depicts the trend for increasing prescribed weekly Epoetin dosing (units/kg/week) from late 1999 to late 2003. Prescribed weekly SC Epoetin doses were lower than the prescribed weekly IV Epoetin doses at most hemoglobin categories examined.

Figure 73: Mean prescribed weekly IV Epoetin dose (units/kg/ week) for pediatric (aged 12 to < 18 years) in-center hemodialysis patients, by hemoglobin category, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

Note: SC dose distribution not displayed due to small number of patients. Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Iron management for pediatric patients aged 12 to < 18 years improved over the five study periods (FIGURE 74).

Figure 74: Iron management parameters for pediatric (aged 12 to < 18 years) in-center hemodialysis patients, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

D. SERUM ALBUMIN

1. Findings for October-December 2003 (for patients < 18 years)

The mean (± SD) serum albumin value for pediatric patients whose value was determined by the BCG method (n=566) was $3.9 (\pm 0.5) \text{ g/dL} (39 [\pm 5] \text{ g/L})$, and by the BCP method (n=112) was 3.6 (\pm 0.4) g/dL (36 [\pm 4] g/L). Nationally, 48% of patients had a mean serum albumin \geq 4.0/3.7 g/dL (40/37 g/L) (BCG/ BCP). 81% of patients had a mean serum albumin \geq 3.5/3.2 g/dL (35/32 g/L) (BCG/BCP). The percent of patients with mean serum albumin \geq 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP) by gender, race, ethnicity, age, duration of dialysis, access type, and mean delivered spKt/V and hemoglobin categories is shown in Table 25. The percent of patients with mean serum albumin \geq 4.0/3.7 g/dL (40/37 g/L) (BCG/BCP) tended to be higher for males, Whites, Hispanics, patients dialyzing 6 months or longer compared to patients dialyzing less than 6 months, for patients dialyzed with either an AVF or an AV graft compared to catheters, and for patients with a mean hemoglobin ≥ 11 g/dL (110 g/L) compared to patients with lower mean hemoglobin values.

Figure 75 shows the percent of pediatric patients with mean serum albumin $\ge 4.0/3.7$ g/dL (40/37 g/L) and $\ge 3.5/3.2$ g/dL (35/32 g/L) (BCG/BCP) by age group.

Figure 75: Percent of pediatric (aged < 18 years) in-center hemodialysis patients with mean serum albumin $\geq 4.0/3.7$ g/dL (BCG/BCP)^ and $\geq 3.5/3.2$ g/dL (BCG/BCP), by age, October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

^BCG/BCP = bromcresol green/bromcresol purple laboratory methods. Note: To convert serum albumin conventional units of g/dL to SI units (gL), multiply by 10.

TABLE 25: Percent of all pediatric (aged < 18 years) in-center hemodialysis patients with mean serum albumin values $\geq 4.0/3.7$ g/dL (BCG/BCP)[^], and $\geq 3.5/3.2$ g/dL (BCG/BCP), by patient characteristics, October-December 2003. 2004 ESRD CPM Project.

Patient Percer Characteristics	Percent of Patients with Mean Serum Albumi $\geq 4.0/3.7 \text{ g/dL}$ $\geq 3.5/3.2 \text{ g/dL}$			
TOTAL	48	81		
GENDER				
Males	54	84		
Females	41	77		
RACE				
American Indian/				
Alaska Native	*	*		
Asian/Pacific Islander	*	70		
Black	41	80		
White	53	81		
Other/Unknown	50	88		
ETHNICITY				
Hispanic	59	85		
Non-Hispanic	43	79		
AGE GROUP (years)				
0-4	57	96		
5-9	38	70		
10-14	43	77		
15 to < 18	53	84		
DURATION of DIALYSIS (years)			
< 0.5	36	65		
0.5-0.9	53	80		
1.0-1.9	54	87		
2.0-2.9	53	85		
3.0-3.9	53	90		
4.0+	48	86		
ACCESS TYPE				
AV Fistula	62	90		
AV Graft	56	94		
Catheter	41	74		
Catheter \geq 90 days	44	79		
MEAN spKt/V				
≥ 1.2	50	83		
< 1.2	40	70		
MEAN Hgb (g/dL)				
≥11	57	88		
< 11	30	66		

NOTE: Percentages may not add up to 100% due to rounding.

*Value suppressed because $n \le 10$.

^BCG/BCP = bromcresol green/bromcresol purple laboratory methods. Note: To convert hemoglobin conventional units of g/dL to SI units (g/L), multiply by 10.

Note: To convert serum albumin conventional units of g/dL to SI units (g/L), multiply by 10.

2. Findings for October-December 2003 compared to previous study periods (for patients < 18 years)

a. Findings for patients 0 to < 12 years

There has been little change in the percent of pediatric patients aged 11 years or younger achieving mean serum albumin targets from late 2001 to late 2003 (FIGURE 76).

Figure 76: Percent of pediatric (aged 0 to < 12 years) in-center hemodialysis patients with mean serum albumin $\ge 4.0/3.7$ g/dL (BCG/BCP)^ and $\ge 3.5/3.2$ g/dL (BCG/BCP), October-December 2003 compared to previous study periods. 2004 ESRD CPM

Note: To convert serum albumin conventional units of g/dL to SI units (gL), multiply by 10.

b. Findings for patients 12 to < 18 years

There was no clinically important change or improvement in the percent of pediatric patients aged 12 to < 18 years achieving mean serum albumin targets from late 1999 to late 2003 (FIG-URE 77).

Figure 77: Percent of pediatric (aged 12 to < 18 years) incenter hemodialysis patients with mean serum albumin $\ge 4.0/3.7$ g/dL (BCG/BCP)^ and $\ge 3.5/3.2$ g/dL (BCG/BCP), October-December 2003 compared to previous study periods. 2004 ESRD CPM Project.

^BCG/BCP = bromcresol green/bromcresol purple laboratory methods. Note: To convert serum albumin conventional units of g/dL to SI units (gL), multiply by 10.

VIII. References

- Renal Physicians Association. Clinical practice guideline on adequacy of hemodialysis: Clinical practice guideline, number 1. December 1993. (pamphlet).
- National Kidney Foundation. K/DOQI Clinical Practice Guidelines for Hemodialysis Adequacy, 2000. Am J Kidney Dis 37:S7-S64, 2001 (suppl 1).
- National Kidney Foundation. K/DOQI Clinical Practice Guidelines for Peritoneal Dialysis Adequacy, 2000. Am J Kidney Dis 37:S65-S136, 2001 (suppl 1).
- National Kidney Foundation. K/DOQI Clinical Practice Guidelines for Vascular Access, 2000. Am J Kidney Dis 37:S137-S181, 2001 (suppl 1).
- National Kidney Foundation. K/DOQI Clinical Practice Guidelines for Anemia of Chronic Kidney Disease, 2000. Am J Kidney Dis 37:S182-S238, 2001 (suppl 1).
- Blagg CR, Liedtke RJ, Batjer JD, Racoosin B, Sawyer TK, Wick MJ, Lawson L, Wilkens K. Serum albumin concentration-related Health Care Financing Administration quality assurance criterion is method-dependent: revision is necessary. Am J Kidney Dis 1993;21:138-144.
- National Kidney Foundation. K/DOQI Clinical Practice Guidelines for Nutrition in Chronic Renal Failure, 2000. Guideline No. 3. Am J Kidney Dis 2000; 35 (supplement 2):S20-S21.
- U.S. Renal Data System, USRDS 2004 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2004.
- 2003 ESRD facility survey (CMS-2744) data, Centers for Medicare & Medicaid Services, Office of Clinical Standards and Quality. (report).
- 10. Lohr KN, Schroeder SA. A strategy for quality assurance in Medicare. N Engl J Med 1990;322:707-712.
- Gagel BJ. Health Care Quality Improvement Program: A New Approach. Health Care Financing Review 1995; 16(4):15-23.
- 12. Vladeck BC. From the HCFA ESRD Core Indicators Project. JAMA 1995;273:1896.
- NKF-DOQI Clinical Practice Guidelines for Hemodialysis Adequacy. Am J Kidney Dis 30:S15-S66, Sept. 1997 (suppl 2).
- NKF-DOQI Clinical Practice Guidelines for Peritoneal Dialysis Adequacy. Am J Kidney Dis 30:S67-S136, Sept. 1997 (suppl 2).