1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	CENTERS FOR MEDICARE AND MEDICAID SERVICES
12	Medicare Evidence Development & Coverage
13	Advisory Committee
14	
15	
16	
17	
18	
19	
20	June 17, 2009
21	
22	Centers for Medicare and Medicaid Services
23	7500 Security Boulevard
24	Baltimore, Maryland
25	

- 1 Panelists
- 2
- 3 Chair
- 4 Clifford Goodman, Ph.D.
- 5
- 6 Voting Members
- 7 Saty Satya-Murti, M.D., FANN
- 8 David A. Axelrod, M.D., M.B.A.
- 9 John Cox, D.O., F.A.C.P.
- 10 Mercedes K.C. Dullum, M.D.
- 11 Mark D. Grant, M.D., M.P.H.
- 12 Mark A. Hlatky, M.D.
- 13 William H. Maisel, M.D., M.P.H.
- 14 Curtis A. Mock, M.D., M.B.A.
- 15 Joshua P. Prager, M.D., M.S.
- 16
- 17 CMS Liaison
- 18 Marcel Salive, M.D.
- 19
- 20 Industry Representative
- 21 Jose Alvir, Dr.P.H.
- 22
- 23 Executive Secretary
- 24 Maria A. Ellis
- 25

000	003	
1	TABLE OF CONTENTS	
2	Page	
3	Opening Remarks	
4	Barry Straube, M.D./Maria Ellis.	/
5	Marcel Salive/Clifford Goodman	n 5
6		
7	Presentation of Voting Questions	
8	Rosemarie Hakim, M.D.	13
9		
10	Introduction of Panel	15
11		
12	Scheduled Presentations	
13	Steven Goodman, Ph.D.	17
14	Donald Berry, Ph.D.	73
15	Roger Lewis, M.D., Ph.D.	107
16	Sharon-Lise Normand, Ph.D.	149
17	Gillian Sanders, Ph.D.	186
18	Donald Berry, Ph.D.	212
19		
20	Scheduled Public Comments	
21	Bryan R. Luce, Ph.D., M.B.A.	232
22		
23	Open Public Comments	N/A

25 Panel Questions to Presenters

1	Open Panel Discussion, Formal Remarks	
2	and Voting 311	
3		
4	Closing Remarks and Adjournment	323
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

1 PANEL PROCEEDINGS

- 2 (The meeting was called to order at
- 3 8:10 a.m., Wednesday, June 17, 2009.)
- 4 MS. ELLIS: Good morning and welcome,
- 5 committee chairperson, vice chairperson,
- 6 members and guests. I am Maria Ellis, the
- 7 executive secretary for the Medicare Evidence
- 8 Development and Coverage Advisory Committee.
- 9 The committee is here today to discuss the
- 10 evidence, hear presentations and public
- 11 comment, and make recommendations concerning
- 12 the use of Bayesian statistics to interpret
- 13 evidence in making coverage decisions. The
- 14 meeting will introduce Bayesian concepts,
- 15 contrast Bayesian approaches with frequentist
- 16 approaches, and provide some examples of using
- 17 Bayesian techniques for meta-analysis.
- 18 The following announcement addresses
- 19 conflict of interest issues associated with
- 20 this meeting and is made part of the record.
- 21 The conflict of interest statutes prohibit
- 22 special government employees from participating
- 23 in matters that could affect their or their
- 24 employer's financial interests. Each member
- 25 will be asked to disclose any financial

- 1 conflicts of interest during their
- 2 introduction.
- 3 We ask in the interest of fairness
- 4 that all persons making statements or
- 5 presentations also disclose any current or
- 6 previous financial involvement in a company
- 7 that performs Bayesian analysis or develops
- 8 guidance for the use of Bayesian analysis for
- 9 public policy-making. This includes direct
- 10 financial investments, consulting fees and
- 11 significant institutional support. If you
- 12 haven't already received a disclosure
- 13 statement, they are available on the table
- 14 outside of the auditorium.
- 15 We ask that all presenters please
- 16 adhere to their time limit. We have numerous
- 17 presenters to hear from today and a very tight
- 18 agenda and, therefore, cannot allow extra time.
- 19 There is a timer at the podium that you should
- 20 follow. The light will begin flashing when
- 21 there are two minutes remaining and then turn
- 22 red when your time is up. Please note that
- 23 there is a chair for the next speaker, and
- 24 please proceed to that chair when it is your
- 25 turn. We ask that all speakers addressing the

- 1 panel please speak directly into the mic and
- 2 state your names.
- 3 For the record, voting members present
- 4 for today's meeting are: Dr. Saty Satya-Murti,
- 5 Dr. David Axelrod, Dr. John Cox, Dr. Mercedes
- 6 Dullum, Dr. Mark Grant, Dr. Mark Hlatky, Dr.
- 7 William Maisel, Dr. Curtis Mock, and Dr. Joshua
- 8 Prager. A quorum is present and no one has
- 9 been recused because of conflicts of interest.
- 10 The entire panel, including nonvoting
- 11 members, will participate in the voting. The
- 12 voting scores will be available on our web site
- 13 following the meeting. Two averages will be
- 14 calculated, one for voting members and one for
- 15 the entire panel.
- 16 I ask that all panel members please
- 17 speak directly into the mic, and you may have
- 18 to move the mic since we have to share. If you
- 19 require a taxicab, there is a signup sheet at
- 20 the desk outside of the auditorium. Please
- 21 submit your request during the lunch break.
- 22 Please remember to discard your trash in the
- 23 trash cans located outside of the auditorium.
- 24 And lastly, and most importantly, all
- 25 CMS guests attending today's meeting are only

- 1 permitted in the following areas of the CMS
- 2 building site: The main lobby, the auditorium,
- 3 the lower level lobby and the cafeteria. Any
- 4 persons found in any area other than those
- 5 mentioned will be asked to leave the conference
- 6 and will not be allowed back on CMS property
- 7 again.
- 8 And now I would like to turn the
- 9 meeting over to Dr. Barry Straube.
- 10 DR. STRAUBE: Thank you and good
- 11 morning to everybody, the MedCAC panel members
- 12 and also our guests from the public in the
- 13 audience.
- 14 I just want to take a couple of
- 15 minutes. First of all, this particular MedCAC
- 16 is one of several that are a bit different than
- 17 we historically have been approaching MedCAC
- 18 issues, and I think it emanated when we changed
- 19 the name of this committee from MCAC and added
- 20 evidence development, and I think this is very
- 21 very important to the evolution of what we're
- 22 trying to do with the MedCAC.
- 23 Along that line, I wanted to recognize
- 24 and embarrass, in the back of the room,
- 25 Dr. Steve Phurrough, who I did mention at the

- 1 last MedCAC, but Steve is with us today and
- 2 this topic Steve came up with while he was our
- 3 director of the Coverage and Analysis Group
- 4 before going over to AHRQ recently. It was one
- 5 of many topics that Steve and the staff thought
- 6 up and have really advanced in terms of how we
- 7 use the MedCAC here at CMS. I think it's only
- 8 the beginning of a much larger role as time
- 9 goes on as we do more comparative evidence
- 10 review, cost effective analysis, et cetera.
- 11 So Steve, I want to thank you and
- 12 publicly acknowledge your work while you were
- 13 here for seven years, if I remember correctly,
- 14 or at least five. So thank you, Steve, for
- 15 this, and maybe we will dedicate this
- 16 particular MedCAC to you.
- 17 Just quickly, Marcel may, this may be
- 18 cutting into his remarks, but we had a little
- 19 pre-brief meeting before we came up here, and I
- 20 think, again, there was a lot of enthusiasm I
- 21 sensed from the panel members and I appreciate
- 22 that. I think the panel understands and I
- 23 suspect by, actually there's more people in the
- 24 audience than I anticipated, so this is a good
- 25 sign too, and I think there's a number of very

- 1 very important issues that we would like to see
- 2 achieved from this particular MedCAC panel.
- 3 One is a basic one, and it's how do we
- 4 use various types of analysis, but today
- 5 Bayesian analysis, in terms of interpreting
- 6 evidence that we have before us, particularly
- 7 in the area of coverage decision-making. But
- 8 as we discussed earlier this morning, the FDA
- 9 has used Bayesian analysis in their analysis,
- 10 NIH uses it for a variety of things that they
- 11 do. We have perhaps not used Bayesian analysis
- 12 or integrated it as much into our
- 13 decision-making process, at least in a formal
- 14 sense. So I think how we not only use it, but
- 15 how we could possibly align with FDA and NIH
- 16 and other federal agencies at least, but also
- 17 in some cases, are there indications where we
- 18 shouldn't be aligned with them, are there good
- 19 reasons why we should not be using this type or
- 20 other types of analysis.
- 21 I think we've been trying to revise
- 22 our coverage standards through guidance
- 23 documents, et cetera, and I think this MedCAC
- 24 helps us try to refine those guidance
- 25 documents, making it predictable to people who

- 1 want us to make national coverage decisions as
- 2 to how we'll go about that process.
- 3 And then last, I think this type of
- 4 analysis, not only for coverage
- 5 decision-making, but again for the future,
- 6 comparative effectiveness research, cost
- 7 effective analysis if Congress charges us with
- 8 using that in the future, when we get data from
- 9 many complex sources and we're using it for
- 10 other purposes that CMS tends to use it,
- 11 including collecting claims and administrative
- 12 data, collecting data from registries,
- 13 collecting data from RCTs or observational
- 14 studies, collecting data from EHRs and using it
- 15 for coverage payment, quality improvement,
- 16 public reporting, incentive programs and so
- 17 forth, this will carry over into all those
- 18 areas.
- 19 I wanted to end with acknowledging,
- 20 again, that this is the first time we've had
- 21 our new chair, Dr. Cliff Goodman, and our
- 22 cochair, Dr. Saty Satya-Murti, here as a team,
- 23 and I wanted to acknowledge both of these
- 24 gentlemen for taking on these roles. It's very
- 25 important to us and we think we have fantastic

- 1 talent in the chair and the co-chair, as well
- 2 as our panel of participants here today too.
- 3 So thank you all very much. And Marcel, I turn
- 4 it over to you.
- 5 DR. SALIVE: Thank you. Good morning.
- 6 I'm Marcel Salive, division director in the
- 7 Coverage and Analysis Group, and the designated
- 8 government official for this panel. I wanted
- 9 to thank the panel members, all of them
- 10 individually for their willingness to serve and
- 11 engaging this topic today, and I want to thank
- 12 the audience for coming out, and echo the
- 13 comments to Dr. Phurrough as he's bolting from
- 14 the room.
- 15 Today's topic is Bayesian statistics
- 16 which is, as you all know, a statistical theory
- 17 and approach to data analysis that uses a
- 18 method that allows us to learn from evidence as
- 19 it accumulates and uses the mathematic format
- 20 of Bayes theorem to combine prior information
- 21 with current information on a quantity of
- 22 interest. And so I think we have thought here
- 23 at CMS about this, and Barry Straube outlined
- 24 some of the rationale and I want to just echo
- 25 that but say that really, a lot of this derives

- 1 from I think the interest of people who are
- 2 developing evidence using the Bayes method,
- 3 Bayesian statistics, to come here and present
- 4 their evidence to us and have us use it in
- 5 decision-making.
- 6 And we have been hearing this desire
- 7 for a number of years. I think it came much
- 8 more to the forefront when FDA held their
- 9 symposium and issued their guidance documents
- 10 in 2006 on, the guidance that FDA issued on the
- 11 use of Bayesian statistics in medical device
- 12 clinical trials, and so we've heard a lot about
- 13 that here at CMS. But I agree with Dr.
- 14 Straube; I just would point out that there are
- 15 a number of potential uses of this evidence,
- 16 certainly coverage decision-making is our main
- 17 focus in the coverage group, and for developing
- 18 evidence and for comparative effectiveness,
- 19 types of evidence. But there are probably also
- 20 broader applications that we can consider as we
- 21 learn today.
- 22 So with that, I want to thank you
- 23 again, and we can start the proceedings.
- 24 Dr. Rosemarie Hakim is going to present the
- 25 questions.

- 1 DR. HAKIM: Hi, and welcome to the
- 2 MedCAC. As everyone has said, this is a little
- 3 bit unusual for us, and we have a number of
- 4 questions that are more theoretical than
- 5 concrete and so we kind of designed them to be
- 6 discussed, but we also have our traditional
- 7 voting criteria.
- 8 The first voting question is: In
- 9 assessing the strength of evidence for
- 10 effectiveness of a medical intervention that
- 11 incorporates Bayesian design or analysis,
- 12 compared to a frequentist approach, discuss the
- 13 following. The first thing to discuss is the
- 14 greatest potential strengths in a Bayesian
- 15 analysis approach, and the second is, what is
- 16 the greatest potential weaknesses of a Bayesian
- 17 approach.
- 18 The next question is one that we'll
- 19 vote on. It's just asking for your level of
- 20 confidence, asking you how confident you are
- 21 that potential strengths of Bayesian approaches
- 22 outweigh the potential liabilities in the
- 23 design and interpretation of published studies.
- 24 The next one is another one that we're
- 25 going to vote on and it's asking you, how

- 1 confident are you that CMS should incorporate
- 2 evidence that uses Bayesian approaches in
- 3 trials or technology assessments submitted for
- 4 coverage decisions, and it's asking you to
- 5 think about clinical trials and technology
- 6 assessment.
- 7 DR. SALIVE: Thank you. Dr. Goodman.
- 8 DR. C. GOODMAN: Yes. Just a question
- 9 for Maria Ellis. Would you like us to
- 10 introduce ourselves now or later?
- 11 MS. ELLIS: If the panel could
- 12 introduce themselves and disclose if they have
- 13 any financial disclosure before we get started.
- 14 DR. C. GOODMAN: Okay. Cliff Goodman,
- 15 vice president of the Lewin Group. I have no
- 16 financial interests in companies performing
- 17 Bayesian analyses. With regard to potential
- 18 other conflicts, just to disclose, about a
- 19 month ago I moderated a technical working
- 20 section that discussed Bayesian statistics and
- 21 adaptive methods in clinical trials. This was
- 22 sponsored by a group called PACE with the TMVP,
- 23 but was entirely a technical session.
- 24 DR. SATYA-MURTI: Saty Satya-Murti. I
- 25 am a neurologist and have been a Medicare

- 1 medical director for many years in the past,
- 2 and I consult for some industry as well and for
- 3 my own academic society, but I have no
- 4 conflicts of interest for this topic.
- 5 DR. AXELROD: I'm David Axelrod, I'm a
- 6 surgeon from Dartmouth. I have no financial
- 7 interests to disclose and no conflicts.
- 8 DR. COX: John Cox, medical oncologist
- 9 in Dallas, Texas, and I have no conflicts
- 10 associated with Bayesian analysis.
- 11 DR. DULLUM: Mercedes Dullum, cardiac
- 12 surgeon. I have no conflicts for Bayesian
- 13 analysis.
- 14 DR. GRANT: Mark Grant, associate
- 15 director at the Technology Evaluation Center,
- 16 Blue Cross and Blue Shield Association, a
- 17 geriatrician and epidemiologist, and have no
- 18 conflicts of interest.
- 19 DR. HLATKY: Mark Hlatky, a
- 20 cardiologist from Stanford, and I don't think I
- 21 have a conflict, but I will say that I do
- 22 consult with GE Healthcare from time to time
- and maybe they use this, but I don't know.
- 24 DR. MAISEL: Bill Maisel, a
- 25 cardiologist at Beth Israel Deaconess Medical

- 1 Center in Boston.
- 2 DR. MOCK: I am Curtis Mock, I'm a
- 3 family physician and geriatrician, regional
- 4 medical director with United Healthcare. I
- 5 have no financial conflicts and my personal
- 6 interest is improvement in patient care and
- 7 outcomes.
- 8 DR. ALVIR: I'm Jose Alvir, a
- 9 statistician from Pfizer. I have no conflicts
- 10 with regard to Bayesian analysis.
- 11 DR. C. GOODMAN: With that, it's a
- 12 delight to see Steve Goodman here to give our
- 13 initial presentation. Steve, I see we're a
- 14 little bit behind time, but I'm hopeful you
- 15 will remain prompt, and we will give you a
- 16 little warning close to when your time's up,
- 17 but it's great to have you here to kick this
- 18 off.
- 19 DR. S. GOODMAN: So, I'm going to talk
- 20 about, very specifically it's an introduction
- 21 but it's a little different introduction on
- 22 Bayesian approaches in measuring the strength
- 23 of evidence. And I have many, a number of
- 24 colleagues here who have seen me talk on this
- 25 topic in other forums. To those I apologize,

- 1 but you incur an extra special responsibility
- 2 of leading the audience in appropriate
- 3 responses at appropriate times. So don't fall
- 4 asleep.
- 5 So here we go. I'm going to start
- 6 off, I heard there were voting questions, so
- 7 we're going to start of with a voting question,
- 8 and those who have heard this before, you are
- 9 now allowed to raise your hands. So we have a
- 10 well done study that's reported on a new
- 11 electrical stimulator for pain control,
- 12 something that MedCAC might consider.
- 13 The author states that it's turned out
- 14 somewhat surprisingly, in that they thought
- 15 they only had a 25 percent chance of being
- 16 proved before the experiment, to actually be
- 17 effective in migraines, with a difference of 15
- 18 percent in the incidence of migraines in the
- 19 treated and controlled group with a P of .05.
- 20 So the probability that this association is
- 21 real is, I'm giving you three choices, less
- 22 than 75 percent, 75 to just under 95 percent,
- 23 or 95 percent or above. I ask this to every
- 24 audience I speak to about Bayes, so you get
- 25 another two seconds. Normally I give six

- 1 seconds, but we're behind time.
- 2 So with a P of .05, difference of 15
- 3 percent, how many think it's less than 75
- 4 percent? By the way, Maria is counting up the
- 5 number of votes, and it has to add up to the
- 6 number in the room minus the number who've seen
- 7 this before. So less than 75 percent, three
- 8 brave persons. 75 to just under 95 percent?
- 9 Okay. 95 percent or above. So, this could
- 10 really affect the validity outcome of this, it
- 11 didn't quite add up to the number of people in
- 12 the room.
- 13 (Laughter.)
- 14 So, the answer is less than 75
- 15 percent, which some of you probably suspected
- 16 or were afraid of. And I ask this to medical
- 17 audiences, I ask it to all sorts of audiences,
- 18 and I will tell you that these audiences who
- 19 very quickly learn not to answer any of my
- 20 questions, but this one they're actually very
- 21 confident on, they're not afraid of answering
- 22 this question, and usually about 70 to 80
- 23 percent will answer very confidently that it's
- 24 95 percent or above.
- 25 So what's going on here? Well, I gave

- 1 you a piece of information that normally we
- 2 don't know how to incorporate into a question
- 3 like this, which is that it had a less than 25
- 4 percent chance of being true. There is no way
- 5 to incorporate that information. In fact, the
- 6 very question I asked you, what's the
- 7 probability that this association is real, is
- 8 also not answerable using traditional
- 9 techniques. So I asked you an unanswerable
- 10 question using standard methods and I gave you
- 11 information that was not processable using
- 12 standard methods, so it's not surprising that
- 13 most people would get it wrong and that they
- 14 would answer that the only thing that would
- 15 seem to make sense that might lead to a number
- 16 like .05. So, that's why we have more to talk
- 17 about.
- 18 So what were the implications of that
- 19 particular sample? Well, first, that P of .05
- 20 wasn't very strong evidence, it didn't leave us
- 21 very certain at the end of the day. And also,
- 22 they said we don't know how to formally make
- 23 use of that prior information about
- 24 plausibility.
- 25 Let me say a few things I won't be

- 1 saying today. I won't be saying that if we
- 2 turn to Bayesian methods all our problems go
- 3 away. I won't say that the only right thing
- 4 for the statistics world are Bayesian and that
- 5 the Bayesian approach doesn't have its own
- 6 issues. I will say, however, that if we turn
- 7 to Bayesian methods, that difficult issues will
- 8 be discussed in the right way by the right
- 9 people. I will say some of the dilemmas that
- 10 CMS decision-makers face are artifacts of the
- 11 statistical methods that we use in assessing
- 12 the evidence that we look at and not due to the
- 13 math or the scientific method, although
- 14 sometimes it's shrouded in such language, and
- 15 that the Bayesian perspective is the best way
- 16 to think about evidence, and I'm focusing on
- 17 evidence.
- 18 So here is a list of things, by the
- 19 way, that have been identified as cancer risks,
- 20 and I want to emphasize that these were not
- 21 discovered with Bayesian methods, these were
- 22 discovered with standard frequentist methods.
- 23 So before we throw any rocks, if we are
- 24 inclined to later, we have to remember this
- 25 list. And here we go, electric razors, broken

- 1 arms but only in women, fluorescent lights,
- 2 allergies, breeding reindeer, being a waiter,
- 3 owning a pet, fur, being short, being tall,
- 4 eating hot dogs, and if you escape any of those
- 5 risk categories, having a refrigerator. So
- 6 we're all at risk and that is what standard
- 7 methods have delivered unto us.
- 8 Here is my favorite medical journal,
- 9 the New York Times. This is a very typical
- 10 article, I'm sure there's something today of
- 11 this sort, magnets lessen foot pain of
- 12 diabetics, the study finds. As you see
- 13 highlighted in the corner, a finding that runs
- 14 counter to many previous studies, which if you
- 15 had any sense, would have buried this to a
- 16 footnote somewhere. But apparently they think
- 17 this is what makes it newsworthy.
- 18 Now these are direct quotes from the
- 19 article: We have no idea how or why the
- 20 magnets work, but it's a real breakthrough.
- 21 And while the study must be regarded as
- 22 preliminary, the early results are clear and
- 23 the treatment ought to be put to use
- 24 immediately. So this is, again, an example of
- 25 non-Bayesian thinking elevated to headlines in

- 1 the New York Times.
- 2 So let's start with a little technical
- 3 stuff here, and I will tell you I only have, I
- 4 think, one equation in the whole thing. I try
- 5 to tell the story in pictures as much as I can,
- 6 because equations take an hour to explain.
- 7 So let's talk about inferences. There
- 8 are many physicians and people involved in the
- 9 medical field here and you understand the
- 10 difference in medical inference between knowing
- 11 what an illness is, a particular illness, and
- 12 then knowing its symptoms. So that is what's
- 13 called the deductive direction, and this is
- 14 what I learned in my first two years of medical
- 15 school. I was a walking encyclopedia, you give
- 16 me a disease, I could give you a list of
- 17 symptoms. Then I walked into the wards the
- 18 third year and I wasn't told that there was a
- 19 woman with Chagas disease in room four, I was
- 20 told that there was a woman with a cough, rash
- 21 and splenomegaly in room four and I had to go
- 22 in the opposite direction, which isn't
- 23 appearing here in the inductive direction, I
- 24 had to go from the symptoms to the illness, and
- 25 everybody here knows that that's a lot harder.

- 1 So I was a walking encyclopedia, and
- 2 yet I knew very very little. And that's
- 3 because the inductive part, going from the
- 4 symptoms to the illness is actually very very
- 5 difficult to capture and is, the information
- 6 that you have going in the deductive direction
- 7 is not enough, and the exact same issue occurs
- 8 in statistical inference, okay? So if you give
- 9 me a mathematical hypothesis that is the null
- 10 hypothesis, the difference as seen between two
- 11 treatments is zero, I can tell you exactly what
- 12 the probability is that I will observe, so this
- 13 is the truth up here, and this is what we
- 14 actually see, this is the results of studies.
- 15 We don't actually get to see this, this is
- 16 hidden in the clouds, so this is what we get to
- 17 see.
- 18 And so I can tell you, if there is no
- 19 difference between the treatments, exactly how
- 20 probable is it that I will see a five percent
- 21 difference in one direction, I'll see exactly
- 22 zero difference, five percent in the other, 10
- 23 percent in the other, 15 percent, et cetera,
- 24 et cetera. Those are just mathematical
- 25 formulas and that's just called the deductive

- 1 direction of inference. So I can tell you that
- 2 if I know, how often I will see that.
- 3 The problem is that that's not the
- 4 business that we're in. We're shown the study,
- 5 and we need to somehow divine what the
- 6 underlying truth is, that's called the
- 7 inductive direction, and that's what's the
- 8 Bayes theorem and Bayesian inference is
- 9 concerned with. I will tell you there is only
- 10 one formal coherent calculus for the inductive
- 11 inference and that is the Bayes theorem. There
- 12 is really no controversy about that, it's a
- 13 mathematical fact. This is not subject to
- 14 voting by panels or whatever.
- 15 What its strengths and liabilities are
- 16 compared to traditional methods is another
- 17 issue. Traditional rules of inference are a
- 18 collection of principles and conventions to
- 19 avoid errors over the long run if you know what
- 20 the truth is. They don't tell us how likely
- 21 our claims are to be true, so you wonder how we
- 22 make any progress using traditional methods.
- 23 And there's lots of good reasons and we've made
- 24 plenty of good progress, and they often can be,
- 25 they often make a lot of sense, but we often

- 1 confront situations where they don't, and
- 2 that's what this conference is about.
- 3 The Bayesian theorem in words is this.
- 4 We have odds that a hypothesis is true before
- 5 obtaining the data, which is called the prior
- 6 odds. And then we have this thing called the
- 7 Bayes factor, which is what captures the
- 8 evidential strength of the data, which is
- 9 really going to be my focus today. Don Berry,
- 10 who follows me, will not focus on that as much.
- 11 And then you get this final post-study odds
- 12 that the hypothesis is true, and so we will be
- 13 talking more about how to use that information.
- 14 So this is the one equation, and I do
- 15 have to write this on the board, or in the
- 16 slide. So here we have the post-study odds,
- 17 that is the probability of the null hypothesis
- 18 given the data, divided by the probability of
- 19 the alternative hypothesis given the data. So
- 20 the post-study means given the data, you have
- 21 the data in hand, and what does that equal.
- 22 And this is just what I showed you, it is the
- 23 probability of the null over the alternative
- 24 before you pull the data, so it doesn't have
- 25 data here, and this is what I'm going to really

- 1 focus on today. I'm not going to focus nearly
- 2 as much on this, because that's where a lot of
- 3 the attention to Bayes goes and there's a lot
- 4 to be learned from how Bayes treats evidence,
- 5 not just belief.
- 6 So over here we have this thing called
- 7 the Bayes factor and it's marvelously simple.
- 8 It's the probability of the data under the null
- 9 hypothesis, divided by the probability of that
- 10 same data under the alternative hypothesis,
- 11 that is, how well the data is explained by two
- 12 competing explanations. It couldn't actually
- 13 be more simple, that's all it is, and we're
- 14 going to explore it in much more depth.
- 15 This is what you're going to see a
- 16 little bit later, I'm not going to focus on it
- 17 so much, but this is the way we represent the
- 18 prior over multiple hypotheses, so this might
- 19 be all different degrees of treatment
- 20 difference and this is the prior, either the
- 21 prior belief or the prior evidence. This is
- 22 the curve that represents the information from
- 23 the data, which is called the likelihood
- 24 function which we will talk a little bit about,
- 25 and this is the probability of various

- 1 treatment differences based on the combination
- 2 of these two. And this curve will always sit
- 3 between these two, and the way this is
- 4 configured with a bell-shaped curve, it will
- 5 always be a bit more certain.
- 6 And I will say right off the bat,
- 7 there are many things we do with traditional
- 8 methods that pretty much mimic what is done
- 9 naturally under the Bayesian paradigm. In many
- 10 ways they've stolen, or pretty much taken the
- 11 wind out of the sails, in that you can mimic
- 12 this exactly with traditional techniques of
- 13 meta-analysis. So we can obviously accumulate
- 14 evidence if represented in these simple ways
- 15 using traditional meta-analytic techniques and
- 16 come up with somewhat similar answers. It
- 17 doesn't address the somewhat more complex
- 18 situations and issues of design that Don will
- 19 talk about. But there are many things that we
- 20 do in using traditional methods. We sort of
- 21 have patched them up to get some of the
- 22 strengths and abilities of Bayesian methods.
- 23 So, this is another graphic that shows
- 24 what Bayes is all about. We have a certain
- 25 starting prior knowledge, we get data and that

- 1 brings us to a new state of knowledge, final or
- 2 posterior knowledge. And what this shows is
- 3 that you can look at Bayes theorem from two
- 4 perspectives; you can focus on this and this,
- 5 you can talk about it as a calculus of belief,
- 6 that is, the evidence just operates on your
- 7 belief going from prior to posterior, or you
- 8 can look at is as a calculus of evidence,
- 9 because it tells you how to summarize the
- 10 strength of the evidence, and that's going to
- 11 be what I'm going to be talking about mainly,
- 12 because I think that's a lot of what MedCAC
- 13 does, and other bodies, they try to look at the
- 14 strength of the evidence.
- 15 So, how do we know the strength of the
- 16 evidence now? Well, P values are obviously at
- 17 the center of that. And the man responsible
- 18 for them, but also for many wonderful ideas in
- 19 statistics, in fact almost everything that we
- 20 use today that's non-Bayesian, is R.A. Fisher,
- 21 who was a statistician, a geneticist and a
- 22 polymath at the beginning of this century.
- 23 What's really interesting about the history of
- 24 statistics is that with the structure that he
- 25 developed in the '20s, along with hypothesis

- 1 testing which was proposed in the '30s, we have
- 2 sort of the backbones of statistical analyses
- 3 that are used in every article in the medical
- 4 literature and yet this technology is, what,
- 5 almost 80 years old. How many other medical
- 6 technologies do we use virtually unchanged that
- 7 are 80 years old? It's hard to name even one.
- 8 So we should be a little bit
- 9 embarrassed. It's obviously a very important
- 10 foundation to build on and there are a lot of
- 11 important foundational ideas, but the idea that
- 12 we still use and still teach as the basic
- 13 technology of physical analysis and reasoning a
- 14 method that was developed at that time with
- 15 actually remarkably little change should be
- 16 subject to concern.
- 17 And Fisher himself was concerned.
- 18 This is a graduation speech that he gave at the
- 19 University of Michigan in 1958, so, you know,
- 20 30 years after he first brought forth these
- 21 ideas. So, I'm quite sure it's only personal
- 22 contact with the natural sciences that's
- 23 capable to teach straight methodic
- 24 mathematically minded people. I think it's
- 25 worse in this country, the USA, than most,

- 1 though I may be wrong, but certainly there is
- 2 grave confusion of thought. We're quite in
- 3 danger of sending highly trained intelligent
- 4 young men and women out into the world with
- 5 tables of erroneous numbers under their arms
- 6 and a dense fog in the place where their brains
- 7 ought to be. In this century, of course, they
- 8 will be working on guided missiles and advising
- 9 the medical profession on the control of
- 10 disease, and there's no limit to which they
- 11 could impede every sort of national effort.
- 12 So what he saw was his methods being
- 13 twisted in ways and used in very mechanical
- 14 ways that was really an anathema to him, he was
- 15 really a creative scientist, as all the
- 16 statisticians were who developed these methods.
- 17 And the way they've been employed and the way
- 18 they were thought of when they were proposed is
- 19 actually quite different.
- 20 So what's the meaning of a P value?
- 21 Does anybody here know, probability,
- 22 plausibility, possibility? Actually,
- 23 unfortunately, this is what most people think,
- 24 and that's part of the problem, publish. So
- 25 what is the formal definition? It's the

- 1 probability of getting a result as or more
- 2 extreme than the observed result if the null
- 3 hypothesis, usually chance being operational,
- 4 were true. Now I defy anybody to make sense
- 5 out of that, okay?
- 6 And I will also note since the P value
- 7 is calculated assuming the null hypothesis is
- 8 true, it can't represent the probability that
- 9 the null hypothesis is false. It's already
- 10 assuming the truth. The question is, what does
- 11 it mean about the truth, and that of course is
- 12 our dilemma.
- 13 Here is the picture that corresponds
- 14 to that, here's the distribution or results
- 15 under the null hypothesis, here is the null
- 16 hypothesis, and you see something out here that
- 17 might correspond to a 10, 20, 30 percent
- 18 treatment difference, and we calculate the area
- 19 under that curve. And if we want to make
- 20 things even more obscure, confusing,
- 21 incoherent, we'll calculate it on this side and
- 22 call it a two-sided P value and explain to our
- 23 poor students why that makes sense.
- 24 So that's what a P value is.
- 25 Now, many, many, many people have

- 1 written about the problems, I continued to be
- 2 asked to write about it, I have no idea why,
- 3 because there are literally hundreds of
- 4 articles. One just appeared last year where it
- 5 talked about 12 P value misconceptions, here is
- 6 the list of 12, I'm not going to read them all
- 7 to you. I tried to capture the most prevalent
- 8 ones and here are the most prominent ones.
- 9 The P value is not the probability of
- 10 the null hypothesis, it's not the probability
- 11 that you will make a type one error if you
- 12 reject the null hypothesis, it's not the
- 13 probability that the observed data occurred by
- 14 chance, it's not the probability of the
- 15 observed data under the null hypothesis. It's
- 16 in fact not almost anything sensible you can
- 17 think of. That's not to say it can't be
- 18 interpreted with great care in reasonable ways,
- 19 but it's not directly any of these things, and
- 20 although I could spend hours, days explaining
- 21 why, you can read that particular article or
- 22 the hundreds of others that have preceded it if
- 23 you want to learn why.
- 24 So here is just a little baby toy
- 25 example that tells us why this P value poses

- 1 such problems, and can pose problems for panels
- 2 like yours, which I am sometimes a member of.
- 3 So here we go, this is sort of a baby toy
- 4 example that statisticians are very very fond
- 5 of, but those who haven't seen these examples
- 6 are always sort of flummoxed or surprised by
- 7 this.
- 8 Two scientists perform an experiment
- 9 in which one of them applies two treatments, A
- 10 and B, to the same individual, and they record
- 11 which one is superior. You'll see why it takes
- 12 two scientists in a minute. The precise data
- 13 comes out like this, A is better, A is better,
- 14 A is better, A is better, A is better, five As,
- 15 and then B is better, okay? So that's our
- 16 data.
- 17 So the question is, what's the
- 18 evidence for A being better than B? So you
- 19 couldn't get a more simple example, A is, you
- 20 know, each person is their own control, A is
- 21 better in the first five and then B is better.
- 22 So it sure looks like A is comparatively
- 23 better. So you might ask, what was the design?
- 24 Well, actually the reason I said there were two
- 25 investigators here was because each

- 1 investigator actually had a slightly different
- 2 idea about what the design was. Investigator
- 3 one had a controlled budget and planned to stop
- 4 after six patients no matter what. They didn't
- 5 clue in investigator two, who planned to stop
- 6 the experiment as soon as B was preferred.
- 7 So the question is, why does this
- 8 matter, should it matter? Nature didn't know.
- 9 The treatment didn't know. The bodies to whom
- 10 it was applied didn't know. So should the
- 11 evidence under these two scenarios be any
- 12 different? Let's calculate the P values. So
- 13 here's our design that only takes six samples,
- 14 which you would call a fixed sample size
- 15 design, you always look to the sample size
- 16 fraction when you look for the P value for the
- 17 sample size justification, and you might come
- 18 up with six under a variety of samples, but
- 19 here is the P value.
- 20 So the P value would be the
- 21 probability of what we saw plus the probability
- 22 of a more extreme result, right, under the null
- 23 hypothesis. The null hypothesis is that A
- 24 would be preferred to B one half of the time.
- 25 So what's the probability of five A preferences

- 1 out of six? Well, it's one half to the fifth,
- 2 because the null hypothesis says that A should
- 3 be preferred one half of the time and then
- 4 being preferred, and there's six possible
- 5 combinations of those; it could be at the
- 6 beginning, second, third, fourth, fifth, okay?
- 7 And then we add the probability of more extreme
- 8 data, which is that all six were A. So this
- 9 comes out to .11 and we'd look at it and say
- 10 it's not greater than .05, it's not significant
- 11 and we need another experiment.
- 12 Let's look at the first B design.
- 13 This is what might be called an adaptive
- 14 design, that is, it adapts to the data in hand,
- 15 and you will hear a lot more about this from
- 16 Don Berry. So here we have the probability of
- 17 the data that we have in hand, but here we
- 18 couldn't get B coming first or B coming second,
- 19 we could only get B coming at the end by
- 20 definition, so the probability of that is
- 21 exactly the sequence that we saw, plus the
- 22 probability of getting six As and a B, seven As
- 23 and a B, eight As and a B, and it turns out
- 24 that that P value is .03, significant, less
- 25 published.

- 1 Same data. The only thing that's
- 2 different is what was in the heads of the
- 3 experimenters but they didn't write it down.
- 4 So you might say oh, they didn't write it down.
- 5 But it is a rather funny thing, that depending
- 6 on what was on a piece of paper, the evidence
- 7 in front of you is going to be different, the
- 8 exact same evidence, that is a bit of a
- 9 conundrum.
- 10 So, the conundrum is summarized too,
- 11 the strength of the evidence depends on data we
- 12 didn't see, that is results we didn't get,
- 13 which in turn depends on what the experimenter
- 14 intended to do if other data had been observed,
- 15 that is, the stopping point. So the evidence
- 16 exists only in the experimenter's mind. So
- 17 again, if we start hearing anything about Bayes
- 18 having to do with things in people's minds,
- 19 let's remember this example.
- 20 So what do we do in traditional
- 21 statistics? Well, we try to control this with
- 22 very strict design and conduct rules, and so we
- 23 know exactly what we would have done if we saw
- 24 different things, that's what we try to do. So
- 25 we define very carefully the set of outcomes

- 1 that would have occurred under the null
- 2 hypotheses because we constrain the outcome,
- 3 but it's completely artificial. This is
- 4 completely a demand of the method, it's not
- 5 really a demand of science.
- 6 We're often at a loss, however, if
- 7 those rules aren't followed exactly or if
- 8 they're in any way ambiguous, and this is the
- 9 problem that you confront all the time, and
- 10 here is an example of such a problem being
- 11 confronted in a conversation at the FDA. So
- 12 this was a very well-known incident that
- 13 occurred for the RIS drug Carvedilol, which
- 14 Mark Hlatky probably knows quite well. It was
- 15 a study design that was powered for heart
- 16 failure and it was powered to look at the
- 17 reduction in the symptoms of heart failure
- 18 because they didn't think they would have the
- 19 power to look at mortality endpoints. So they
- 20 chose heart failure as the primary endpoint,
- 21 not because mortality wasn't but because they
- 22 didn't think they would be able to get that
- 23 evidence.
- 24 Well, what happened? What happened
- 25 was that there wasn't a whole lot of effect on

- 1 the heart failure endpoint but there was a very
- 2 big endpoint on a mortality endpoint, and this
- 3 was the discussion that ensued. This is the
- 4 chair of the committee: What we have to
- 5 wrestle with is how to interpret P values for
- 6 secondary endpoints in a trial which frankly
- 7 was negative for the primary. In a trial with
- 8 a positive endpoint you haven't spent all the
- 9 alpha on that positive endpoint and you have
- 10 some alpha to spend on the secondary endpoint.
- 11 In a trial with a negative finding for the
- 12 primary endpoint you have no more alpha to
- 13 spend for the secondary endpoints. And then
- 14 his committee members complete this spiral
- 15 downward.
- 16 What are the P values needed for a
- 17 secondary endpoint? Certainly we're not
- 18 talking .05 anymore, you're out of this .05
- 19 stuff, and I would like to have seen what you
- 20 thought was significant and at what level.
- 21 What P value tells you that it's there study
- 22 after study?
- 23 And Dr. Konstam says, what kind of
- 24 statistical correction do you have to do to
- 25 that survival data given the fact that there is

- 1 no specified endpoint? I have no idea how to
- 2 do that from a mathematical standpoint.
- 3 Now these guys are cardiologists.
- 4 What you want to hear from them is cardiology,
- 5 you don't want to hear about how to spend the
- 6 alpha in their pockets and how to make the
- 7 adjustments, and this is where conventional
- 8 methods can lead you, into this really spiral
- 9 of gibberish about statistics, whereas what you
- 10 should be talking about is did this make sense,
- 11 what were the results of other studies, what
- 12 were ancillary endpoints that support the
- 13 mechanism we might propose. Those are the
- 14 sorts of things that we might want to be
- 15 talking about.
- 16 What happened here is they had a
- 17 result that sort of read against their
- 18 prespecified design focus, which typically
- 19 includes what is the primary endpoint and what
- 20 was the secondary endpoint, and this gets into
- 21 other issues as well. But you can see that
- 22 it's very very difficult to constrain one's
- 23 thinking when you're presented with a result
- 24 that seems nonsensical.
- 25 Eventually, I believe it was in

- 1 another panel convened and this ended up being
- 2 approved, but there are many many examples like
- 3 this, where sort of a religious adherence to
- 4 prespecified rules gets us into territory which
- 5 we don't know how to navigate in, and then you
- 6 can only default, so the Bayes factor talks a
- 7 little bit about it. So, I've already defined
- 8 it, it's simply the probability of data under
- 9 your two competing explanations that you are
- 10 considering.
- 11 So let's do the Bayes factor
- 12 calculation for that little example I showed
- 13 you, the five As and the B, okay? So we have
- 14 here a null hypothesis, which was the
- 15 probability that A preferred is a half, right?
- 16 But right away we have to put something as part
- 17 of the calculation which we didn't have to put
- 18 with the P value, which is an alternative, we
- 19 have to specify the alternative hypothesis.
- 20 This doesn't come into the P value, it only
- 21 comes into sample size calculations and all
- 22 that, but you never hear boo about that later.
- 23 So we're going to take an alternative
- 24 hypothesis, the probability that A preferred is
- 25 five-sixths, exactly what you saw. So I'm

- 1 going to do the best case scenario for the
- 2 alternative. That is, we're going to say the
- 3 truth, the underlying truth is exactly what we
- 4 saw, the probability that A preferred is
- 5 five-sixths, okay? So let's do the
- 6 calculations.
- 7 The probability of this data,
- 8 five-eighths of six patients given under the
- 9 null hypothesis compared to five-eighths of six
- 10 patients under the alternative hypothesis,
- 11 under the fixed sample size design turns out be
- 12 .23. What does that mean? It means that it's
- 13 about one quarter as likely under the null than
- 14 under the alternative, that is, it's about four
- 15 times more likely under this hypothesis than it
- 16 was under this hypothesis, and that is the best
- 17 case scenario we can make, in a sense the
- 18 strongest case we can make against the null.
- 19 But this, there's something
- 20 interesting about that. It's not nearly as low
- 21 as the P value. Remember, the P value under
- 22 this design was .11, so it's more than double
- 23 that. So let's do the same calculation for the
- 24 first B design. It turns out to be exactly the
- 25 same. So the evidence is the evidence, and

- 1 here, remember, the P value was .03.
- 2 So there are two things we learn from
- 3 this. First, this aspect of the design doesn't
- 4 make a difference, the evidence speaks for
- 5 itself. Second, the strength of the evidence
- 6 against the null hypothesis, at least, is
- 7 weaker than it was when we looked at only the P
- 8 value. And the third thing is that this is
- 9 very specific to the specific question we
- 10 asked, which is relative to this alternative
- 11 hypothesis, which is by the way the strongest
- 12 supported hypothesis. And you will note that
- 13 the language I used is very much the language
- 14 we tend to use when we talk about evidence, it
- 15 supports one thing, it supports another. We
- 16 don't talk about evidence only in the negative
- 17 sense which is, again, where the P value gets
- 18 you.
- 19 So I've done this calculation again
- 20 and changed it to an alternative hypothesis
- 21 that there's only a two-thirds chance that A
- 22 would be preferred out of, you know, .66 or
- 23 point-eight-something, and here the evidence,
- 24 again, is the same in the two situations. But
- 25 now it's not quite as strong against the null

- 1 hypothesis, it's weaker, and why? Because the
- 2 observation is that A was preferred five-sixths
- 3 of the time, so it doesn't support this
- 4 alternative that it was a two-thirds chance of
- 5 being preferred as strongly as it did that the
- 6 truth was actually what was seen. So this
- 7 hypothesis is supported a bit less strongly
- 8 over the null, but still what we learned here
- 9 is that the evidence is the evidence.
- 10 So, the Bayes factor doesn't depend on
- 11 something that exists only in the minds of the
- 12 investigators, that in some sense it's more
- 13 objective than the P value, although I'd have
- 14 to say the story is a little more complicated
- 15 than that when we get to non-toy examples. The
- 16 Bayes factor depends on what hypothesis you're
- 17 comparing to the null hypothesis, so you have
- 18 to be careful what question you're asking.
- 19 And I'm going to use an example of
- 20 something that's closer to the kind of things
- 21 that you will see, and the strength of the
- 22 evidence against the null is not as strong as
- 23 the P value indicates. So here's a slide that
- 24 compares the properties of the two measures of
- 25 evidence. The P value is noncomparative in the

- 1 sense that it only is calculated relative to
- 2 the null, and the Bayes factor is comparative
- 3 in the sense that it compares an alternative to
- 4 the evidence, or gives an alternative to the
- 5 null. The P value uses observed data plus
- 6 hypothetical data, that is the data you would
- 7 have seen if other data and something else had
- 8 happened. The Bayes factor only uses the
- 9 observed data, which is why in those two
- 10 scenarios the Bayes factor came out the same,
- 11 it was the same observed data.
- 12 The P value doesn't use an alternative
- 13 hypothesis and the Bayes method uses an
- 14 alternative hypothesis that's explicit and has
- 15 to be predesigned. And also, just to telegraph
- 16 something I will highlight later, it's
- 17 predefined and made explicit in the form of the
- 18 prior. The prior is in essence a prior
- 19 declaration of exactly how you're going to
- 20 weight the evidence across the alternative
- 21 hypothesis.
- 22 With a P value we can only talk in
- 23 terms of negative evidence. With the Bayes
- 24 factor we can talk about evidence being
- 25 negative or positive, it supports the null, it

- 1 supports the alternative, and the language and
- 2 context is much more comfortable. The P value
- 3 is sensitive to stopping rules, the Bayes
- 4 factor is insensitive to stopping rules. The P
- 5 value actually has no formal justification or
- 6 interpretation, the Bayes factor has a formal
- 7 justification or interpretation in the context
- 8 of Bayes theorem. And it's also easy to
- 9 explain, that is, it's how well what we see is
- 10 explained by, you know, by our competing
- 11 explanations, compare that, or it's how much
- 12 our belief changes. So you can look at it
- 13 through either prism. I defy any of you to try
- 14 to explain what a P value is.
- 15 So understanding likelihood, I'm
- 16 actually not going to spend too much time on
- 17 this since in view of my pledge to avoid too
- 18 much statistics they would empirically get
- 19 lost, but I'm going to show them to you anyway
- 20 and hope that they have some intuitive sense
- 21 and you already know what they mean. This is
- 22 just showing you a likelihood curve which is
- 23 defined by the data or, if you observe five out
- 24 of 15 events, so what the likelihood curve
- 25 shows you is how much the data supports all the

- 1 possible underlying hypotheses. It shows you
- 2 how much the evidence supports various degrees
- 3 of truth.
- 4 So what this shows you is if you
- 5 observe five out of 15 events, so you have an
- 6 observed cure rate of one-third, that the
- 7 evidence most strongly supports, what do you
- 8 know -- this is the truth down here, the true
- 9 theory, so the way to read the likelihood curve
- 10 is the truth along this axis, and in a sense it
- 11 is the degree or the strength of the evidence
- 12 for that particular underlying truth on this
- 13 axis. So the strength of the evidence is
- 14 strongest for the cure rate being, what do you
- 15 know, one third, and then it goes down from
- 16 there.
- 17 And you might be pleased to know that
- 18 if you cut this at some point, you're going to
- 19 get something very close to a confidence
- 20 interval, the 95 percent confidence interval,
- 21 and that represents cutting the curve at
- 22 roughly right there. So if you cut the curve
- 23 at about .15, that is evidence that's 15
- 24 percent as strong as it is for the peak value,
- 25 you will get the limits of something that are

- 1 very very close to the confidence interval. So
- 2 this, the foundational concepts underlying
- 3 Bayes evidence and some of the other
- 4 traditional tools we use are very very closely
- 5 connected. I will say it is not always a 95
- 6 percent confidence interval, but in simple
- 7 situations it is.
- 8 Now I talked about alternative
- 9 hypotheses, and I do have to use different,
- 10 sort of flesh that out a bit. There's
- 11 different ways you can state a hypothesis. I
- 12 can state it like this, the alternative
- 13 hypothesis or in any hypothesis, the cure rate
- 14 is 15 percent. That's what's called a simple
- 15 hypothesis, I exactly specified what the cure
- 16 rate is. But I could say the cure rate is
- 17 greater than 15 percent. That's what we call a
- 18 composite hypothesis. Even though you see this
- 19 written all the time, these sort of things, it
- 20 actually represents an infinite number of
- 21 hypotheses, that is, the cure rate could be 16
- 22 percent, 17 percent, 18 percent, 19 percent.
- 23 So this is what's called a composite
- 24 hypothesis.
- 25 A treatment difference of zero, the

- 1 null hypothesis, is a simple hypothesis.
- 2 If treatment is beneficial, that's a
- 3 composite hypothesis, right, because it doesn't
- 4 specify how much benefit. If the treatment is
- 5 harmful, composite. And you will see why this
- 6 is important later.
- 7 So I'm going to show you some examples
- 8 from two trials, and this gets very very close
- 9 to the kind of evidence we normally look at, a
- 10 big RCT and a small RCT, and I'm going to ask
- 11 you which provides stronger evidence against
- 12 the null hypothesis. So we have our big RCT
- 13 that shows a five percent mortality difference
- 14 with a confidence interval from zero to 10
- 15 percent with a P of .05. The small RCT shows a
- 16 20 percent mortality difference but is very
- 17 imprecise because it's a small RCT, a P of .05.
- 18 The question is, what's the evidence against a
- 19 null hypothesis?
- 20 What you learn when you look at this
- 21 in terms of Bayesian evidence is you have to
- 22 add to that question, you have to say compared
- 23 to what. You can't just ask what's the
- 24 evidence against the null hypothesis, because
- 25 we have already been told that by this strange

- 1 measure of the P value the evidence is the
- 2 same, and yet, these results are dramatically
- 3 different, so it doesn't make sense that these
- 4 represent the same evidence against the null
- 5 hypothesis.
- 6 And here are the two likely preferreds
- 7 that correspond to those results. This is the
- 8 big study where it peaks at the five percent
- 9 level and comes down, with the confidence
- 10 interval being zero to 10 percent, and here is
- 11 the small study with the 20 percent peak, with
- 12 the confidence interval from zero to about 40
- 13 percent. So just looking at these curves, do
- 14 these represent the same evidence? They're
- 15 clearly not, but how do we quantify that using
- 16 Bayesian evidence? So we have to be specific
- 17 about the alternative hypothesis, so let's
- 18 start doing that.
- 19 So there's the degree of evidence that
- 20 both curves provide for the null hypothesis,
- 21 it's just that we look at the zero difference
- 22 and we look at the height of the curves right
- 23 there. So now let's ask a specific question.
- 24 Let's ask with a Bayes factor of the null
- 25 hypothesis, the difference is zero, versus the

- 1 difference being five percent, the true
- 2 difference under the, in the small RCT, that is
- 3 this one. So what we do is we look at five,
- 4 here's the five percent number, we look at the
- 5 height of the curve there, and this height over
- 6 that height is 40 percent. So this says that
- 7 the study that showed a 20 percent difference
- 8 with a confidence level of zero to 40 percent
- 9 supports the null hypothesis over the
- 10 hypothesis that the difference is five percent,
- 11 it supports the null hypothesis 40 percent as
- much as this hypothesis, that's 40 percent the
- 13 height of that, which we sort of know. That
- 14 is, if the possible estimates are spread out
- 15 all over the place, this study can't
- 16 distinguish very well between a null effect and
- 17 a five percent effect, that's what this is
- 18 telling me. It provides very little evidence
- 19 for the null versus the five percent effect.
- 20 Let's ask the same question of the big
- 21 RCT, what's the Bayes factor for no effect
- 22 versus a five percent effect? So what we do is
- 23 we extend that line up to there and we divide
- 24 this by this, and that's 14 percent. That is,
- 25 the five percent difference is supported one

- 1 over that, about seven times more than that.
- 2 And that is because this study is much better
- 3 at discriminating between a five percent
- 4 difference and a zero percent difference.
- 5 So when we ask the question the right
- 6 way, when we say compared to what and we
- 7 compare it to the same thing, the evidence
- 8 provided for the five percent mortality versus
- 9 the null is quite different in the big RCT
- 10 versus the small RCT in spite of the fact that
- 11 they have the same P values.
- 12 Let's flip it around. Let's say
- 13 what's the evidence for a 20 percent
- 14 difference? Well, for the small RCT it's this
- 15 peak over this peak, which not surprisingly is
- 16 the same number we had before, .14, so the big
- 17 study supports a 20 percent difference over a
- 18 zero percent difference about seven times more
- 19 strongly.
- 20 But let's look at the other one, and
- 21 this is really interesting. The small study --
- 22 I'm sorry -- the large study which had a five
- 23 percent difference, it says the Bayes factor of
- 24 the null hypothesis versus the difference being
- 25 as big as 20 percent in the big RCT is greater

- 1 than a million, so here we have the null
- 2 hypothesis is not supported very well compared
- 3 to the 20 percent. Here it says that the null
- 4 hypothesis is supported a million times more
- 5 than the hypothesis if the true cure rate is 20
- 6 percent, and how could that be?
- 7 Well actually, this tells us just what
- 8 the confidence interval tells us. The
- 9 confidence interval on that big study goes from
- 10 about zero to 10 percent, so it pretty much
- 11 completely rules out a 20 percent change,
- 12 right? That's what the large study probability
- 13 tells us, that, you know, the null hypothesis
- 14 is barely in the mix, 20 percent is totally out
- 15 of the mix, so the null hypothesis is actually
- 16 supported by this study if we're comparing it
- 17 to a 20 percent difference by over a million
- 18 fold. So this shows you the importance of
- 19 asking the question carefully and precisely and
- 20 accurately.
- 21 The only place where we get seeming
- 22 equivalence of the Bayes factor is if we
- 23 compare these two heights over these two
- 24 heights, but these represent Bayes factors for
- 25 different alternative hypotheses. This one is

- 1 the delta equals five percent hypothesis, this
- 2 one is the delta equals 20 percent hypothesis,
- 3 and then we have Bayes factors that are equal
- 4 of .14 to .14, but they're evidence for
- 5 different hypotheses, and that's the problem.
- 6 And the P value is the surrogate for this and
- 7 this is why the P value is so confusing, it
- 8 doesn't include information about the
- 9 magnitudes of the effects. So when I tell you
- 10 the P value is .05, which in this case is the
- 11 correlate of the Bayes factor in these two,
- 12 it's, while it is evidence against the null in
- 13 some sense, even though the number is wrong,
- 14 it's evidence against the null with respect to
- 15 different alternatives and that is the problem,
- 16 and that's what Bayes is very very rigorous
- 17 about and that's why it makes more sense.
- 18 So here we have a table that combines
- 19 the data, the alternative hypotheses and the
- 20 Bayes factor, and you see that we have these
- 21 equivalent Bayes factors only when we have
- 22 different alternative hypotheses, so it's just
- 23 restating what I just said.
- 24 So, I know we're technically five
- 25 minutes from when I was supposed to end even

- 1 though I started 20 minutes late, or ten I'm
- 2 getting, okay.
- 3 DR. C. GOODMAN: Eight.
- 4 DR. S. GOODMAN: Eight, okay. I will
- 5 do my best, but that was the toughest part.
- 6 Suffice it to say that the P value
- 7 confuses us about evidence because it doesn't
- 8 take into account how large the effect is, a
- 9 tiny effect in a large trial will appear to be
- 10 the same evidence as a large effect in a small
- 11 trial.
- 12 Now of course we do ask questions like
- 13 what's the Bayes factor of the null hypothesis
- 14 versus the treatment is beneficial, that is
- 15 that the treatment difference is greater than
- 16 zero, in which case we're talking about the
- 17 evidence for the whole curve and what might we
- 18 want to do then. Well, this is what Bayes
- 19 does. It averages the height of that whole
- 20 curve according to the pis. It compares this
- 21 height compared to the average height of the
- 22 rest of the curve, and that average is using
- 23 the prior as a weight function. So it sort of
- 24 says, what's the average evidence for benefit
- 25 over the rest of the, some reasonable range.

- 1 So that's what the prior is doing, that's what
- 2 the Bayesian evidence measure, how it's
- 3 operating.
- 4 So this is the last slide on which I'm
- 5 going to spend a little bit of time with, it's
- 6 sort of a Rosetta stone of translation, very
- 7 very complicated, but in fact it's not quite as
- 8 complicated as it looks. Here's the P value,
- 9 here's the smallest Bayes factor we can muster
- 10 for the null hypothesis, and you get the
- 11 smallest Bayes factor when you always specify
- 12 the alternative that is most supported by the
- 13 data. I'll be happy to leave that there.
- 14 This is a sort of more moderate
- 15 Bayesian evidence measure, but I would just
- 16 focus here, and here we have words that
- 17 describe the strength of the evidence. And
- 18 this shows the effects of this degree of
- 19 evidence, the maximum effect, the maximum
- 20 effect of a P of .05 translated into the
- 21 maximum -- the most powerful Bayes factor it
- 22 can be translated into. It shows it's effect
- 23 on various prior probabilities in the null
- 24 hypothesis.
- 25 We'll focus on the P of .05. This

- 1 translates into a minimum Bayes factor of .15,
- 2 which is enough to bring you from a prior
- 3 probability of the null hypothesis of 75
- 4 percent to a probability of 31 percent, a flip
- 5 of the coin null hypothesis probability of 50
- 6 percent, down to a probability of 13 percent.
- 7 That is, if you concluded that the association
- 8 was real on the basis of that, you would be
- 9 wrong 13 percent of the time.
- 10 And finally, if you said you were 95
- 11 percent confident that the association was
- 12 real, that is that the null hypothesis only had
- 13 a five percent chance, you would essentially be
- 14 saying using this translation that you were
- 15 only 26 percent confident that the null
- 16 hypothesis were true before you started. So
- 17 any statement based on the P of .05 that you're
- 18 95 percent sure that your conclusions are true
- 19 means that you were 75 percent sure before you
- 20 even started, at least 75 percent if not more.
- 21 And you can go down here, you see that
- 22 a P of .01 corresponds to a most powerful Bayes
- 23 factor, and again, a true Bayes factor under
- 24 realistic conditions is going to be larger than
- 25 this, gets you down from a probability on the

- 1 null hypothesis of 60 percent to five percent,
- 2 so you find that you have to demand somewhat
- 3 more evidence looking through a Bayesian lens
- 4 than you do, again, if you're looking at just
- 5 the null hypothesis, that you do if you're
- 6 looking at Bayesian measures of evidence, and
- 7 all these numbers are higher than these
- 8 numbers, but these are a lot higher. So, I
- 9 can't -- I will just leave that there.
- 10 So I only start to call things, start
- 11 using the word strong when I get well below
- 12 .01. John Ioannidis looked at the Bayes factor
- 13 in about 300 epidemiologic studies and compared
- 14 them to the P values and this, the fact that
- 15 there's a threshold here reflects that there's
- 16 a minimum Bayes factor. But what you see here,
- 17 here's the P value, here's the Bayes factor, so
- 18 the P value of one percent, two percent, three
- 19 percent, four percent, five percent, he did
- 20 this only for significant P values. And you
- 21 see here just what I've shown you, that the
- 22 Bayes factors as he defined them ranged from
- 23 .2, .4, .6, .8, much higher numbers. And you
- 24 see that although there's this cluster around
- 25 the minimum, there's a whole spread of studies

- 1 that have significant P values but really very
- 2 noncompelling Bayes factors, and all of these
- 3 correspond to basically small studies with
- 4 large effects, that's what they are.
- 5 I'll just say this, or jump to this as
- 6 a famous example. A scientist gathers ten
- 7 observations and discovers to her horror that
- 8 they're nonsignificant, and she's quite sure
- 9 there's a difference, and she comes to MedCAC
- 10 and says listen, I want to show that this
- 11 device or treatment works, how much more
- 12 evidence can I work to provide to convince you
- 13 that this actually works. And the actual
- 14 answer is, using conventional approaches, start
- 15 a new area of research, no amount of additional
- 16 evidence can lower the overall type one error
- 17 below 9.75 percent, because she's already spent
- 18 her five percent alpha, and you know, in her
- 19 second crack at this she's going to spend
- 20 another fraction of that alpha. So there's no
- 21 getting below the magic alpha of five percent
- 22 if she used that threshold.
- 23 The Bayesian answer would be
- 24 different. If a scientist gathers ten
- 25 observations and discovers that the Bayes

- 1 factor is greater than .05, what's the advice
- 2 that we give about how to conduct the
- 3 experiment, and the answer is keep collecting
- 4 data until the Bayes factor is less than five
- 5 percent, until you run out of money, time, or
- 6 CMS approves.
- 7 Because in fact, even though we know
- 8 that if you look multiple times at P values,
- 9 you're bound to get a significant result, it's
- 10 not true for Bayes factors. You can look as
- 11 many times as you want, your probability of
- 12 "significant" Bayes factor, and seriously we'll
- 13 define it as five percent, when it by
- 14 definition is less than five percent. There's
- 15 a limit on how often you can get misleading
- 16 evidence if you define the alternative
- 17 hypothesis before you start and that's the key,
- 18 defining the alternative hypothesis before you
- 19 start and not wavering. So in other words, if
- 20 would stop a trial -- this is just restating.
- 21 This is Bayesian learning, which you
- 22 will hear from Don, you'll get some more
- 23 Bayesian learning from him, and that's one of
- 24 the favorites.
- 25 So, a few final words on priors.

- 1 Priors if informative should be evidence-based,
- 2 that is, if they have a lot of information in
- 3 them. Informative priors can often be
- 4 represented as data equivalents, that is a
- 5 prior with a 95 percent confidence interval of
- 6 plus or minus 10 percent cure rate is the
- 7 approximate equivalent of an RCT with 400
- 8 subjects. So you have to think if you're going
- 9 to use very informative priors that you're
- 10 willing to say that the evidence or belief is
- 11 worth that much information. So there's not
- 12 magic in Bayesian formulation, the prior does
- 13 in a sense represent evidence of some sort, and
- 14 if we're going to use it for public policy
- 15 purposes, we should look very closely at what
- 16 that evidence is.
- 17 As I've already said on many
- 18 occasions, Bayes theorem is mathematically
- 19 similar to a meta-analysis of the evidence in
- 20 the prior to the evidence from the data.
- 21 And this is one example of, a real
- 22 example of a study that we designed for kids
- 23 where here was the evidence from adults, there
- 24 was a lot of evidence from adults on the
- 25 efficacy of a certain treatment for

- 1 Guillain-Barre' disease. And in our planning
- 2 we said okay, we're going to say that this
- 3 represents this much evidence in kids. That
- 4 is, there was evidence from about three to 400
- 5 adults that actually showed a benefit of the
- 6 therapy. We said we're going to center it
- 7 around one, we're not going to presume benefit,
- 8 but we're going to say that the 300 adults were
- 9 worth 70 kids.
- 10 Now you could take issue with that,
- 11 but the discussion around how similar the
- 12 disease and treatment is between adults and
- 13 kids, that's a real discussion that you can
- 14 have, that's a discussion I want neurologists
- 15 and pathologists and doctors to have, and can
- 16 inform us. It's not a discussion about
- 17 spending alpha and stopping rules and things
- 18 like that, and that's what I mean by saying
- 19 that Bayes has the right issues discussed by
- 20 the right people.
- 21 So prior specification of how we'll
- 22 measure evidence with the alternative
- 23 hypothesis can be seen as a prior restraint on
- 24 how we measure that evidence. I really want to
- 25 emphasize this. We often talk about the prior,

- 1 you know, as this magic subjective
- 2 nonscientific component, but it's a constraint,
- 3 it's a straitjacket in the same way that the
- 4 design is a prior constraint, but this is a
- 5 constraint we can talk about. And the design
- 6 is a prior constraint on the set of possible
- 7 outcomes under the null hypothesis, and it is
- 8 this constraint of the priors that sets the
- 9 design free, and Don is going to speak to that.
- 10 So it's critical.
- 11 Both forms of inference have
- 12 constraints, but the Bayesian one has one that
- 13 is more explicit and makes more sense and is
- 14 subject to discussion. So what CMS needs to
- 15 know, the Bayes theorem has a separable data
- 16 and belief component that can be viewed as a
- 17 calculus of evidence and not just belief. The
- 18 likelihood-based evidence measures can have
- 19 very attractive frequentist, that is error
- 20 control properties, I haven't shown you that,
- 21 Don will, but you don't give up using these
- 22 measures of evidence. In fact you can do it
- 23 just as well, you just do it along more
- 24 sensible measures of evidence.
- 25 Standard inferential methods represent

- 1 evidence inappropriately, use unnecessary
- 2 rigidity in design and interpretation, and that
- 3 the use of Bayesian evidential measures can
- 4 have an impact far beyond the sometimes
- 5 different numbers they produce. They affect
- 6 how we talk about the evidence and who
- 7 participates meaningfully in that dialogue.
- 8 So, this is the entre to Don. This
- 9 prior evidence defined in a broad sense should
- 10 be formally incorporated in the interpretation
- 11 of clinical research. It is certainly relevant
- 12 to the design of clinical research. So I have
- 13 a quote here from Don, we're all Bayesians in
- 14 the design phase, and I couldn't find it
- 15 specifically in his writings but he's repeated
- 16 it I think every seven minutes between 1970 and
- 17 2009, and you're going to hear it again today,
- 18 so I hope I haven't stolen his thunder.
- 19 I'm going to give the final word to
- 20 A.W.F. Edwards, who was a disciple of R.A.
- 21 Fisher, who said this. What used to be called
- 22 judgment is now called prejudice. What used to
- 23 be called prejudice is now called a null
- 24 hypothesis. It is dangerous nonsense dressed
- 25 up as a scientific method and will cause much

- 1 trouble before it's widely appreciated as such.
- 2 I think that presages our meeting today.
- 3 Thank you.
- 4 DR. C. GOODMAN: Thank you very much,
- 5 Steve. Steve, before you leave the podium, can
- 6 you distill for us in really a sentence or
- 7 two --
- 8 DR. S. GOODMAN: I might say no to
- 9 that.
- 10 DR. C. GOODMAN: Can you distill for
- 11 us in a sentence or two from a practical
- 12 standpoint, were CMS to use Bayesian
- 13 interpretation in making coverage
- 14 determinations based on available evidence,
- 15 using those methods, that would increase the
- 16 credibility of their coverage determination in
- 17 exactly what way, and speak to the
- 18 non-statisticians among us.
- 19 DR. S. GOODMAN: That's a very big
- 20 question. I think I'm going to sound like a
- 21 Supreme Court justice here or something. It
- 22 really depends on the specifics and the kinds
- 23 of conversation that went into the coverage
- 24 decision. I will say that very often good
- 25 people, sensible people looking at evidence in

- 1 sophisticated ways can articulate judgments
- 2 that at the end of the day are the same
- 3 judgments you would make with Bayesian methods.
- 4 However, it sometimes looks like you bent the
- 5 rules, like issues without plausibility, and I
- 6 haven't even gone into the comparative
- 7 effectiveness and issues of safety, have either
- 8 been broken or bent or implicit, and this
- 9 sometimes makes the rationale for those
- 10 decisions much more explicit.
- 11 And it takes the conversations that
- 12 you might have around the table around the real
- 13 issues that went behind the coverage decision
- 14 rather than leaving issues around studies that
- 15 either deviated from their planned design, or
- 16 interventions that don't have a good biologic
- 17 foundation for which you might want to demand
- 18 more evidence, but it's very difficult to do
- 19 that under the current paradigm where you have
- 20 these P .05 thresholds. So I would say that
- 21 the way one articulates and incorporates
- 22 formally the judgments that are made about the
- 23 requirement for evidence thresholds, more of
- 24 that will be on the table, a little less will
- 25 be mysterious.

- 1 With that said, you know, I can't say
- 2 in every situation that it's going, that it
- 3 will make a revolutionary difference, and if it
- 4 was, then I would be impugning every decision
- 5 that the MedCAC has done. That said, it
- 6 allows -- I don't want to focus just on the
- 7 interpretation of evidence. There's a whole
- 8 domain which Don is going to talk about with
- 9 Bayesian design and the kinds of studies that
- 10 we set up and the kinds of studies that might
- 11 be used to produce evidence to the panel that
- 12 could be changed by incorporating a more
- 13 liberal Bayesian approach.
- 14 So I don't want to take the question,
- 15 just if we were fed a certain amount of
- 16 evidence, will our decisions be better. I
- 17 think this has the potential for affecting the
- 18 kind of evidence that you're presented with in
- 19 the first place, so it's sort of a twofold
- 20 answer.
- 21 DR. C. GOODMAN: So if I were to
- 22 distill what you just said, it sounds as though
- 23 it could lend greater transparency to
- 24 deliberation, number one. Number two, it could
- 25 inform the design prospectively, CMS might be

- 1 better able to inform those who would generate
- 2 evidence on how to design studies that would
- 3 yield more useful evidence.
- 4 DR. S. GOODMAN: Yes, and it does
- 5 prevent the sometimes silly mistakes due to the
- 6 adherence to sort of mechanical rules which
- 7 sometimes happens, but in the hands of sensible
- 8 people hopefully it doesn't; it doesn't happen
- 9 too often.
- 10 DR. C. GOODMAN: Thank you. Again,
- 11 before you leave, I know we may come back to
- 12 further questions, but we're going to have two
- 13 concise questions and even more concise answers
- 14 from you, if that's possible. David first,
- 15 quickly.
- 16 DR. AXELROD: I wanted to come back to
- 17 your Carvedilol example that you brought up
- 18 earlier, and the question of sort of secondary
- 19 endpoints and subgroup analysis and that sort
- 20 of stuff. And I think you made a fairly
- 21 convincing argument that at least from a
- 22 primary effects design phase, if you design it
- 23 right, Bayesian statistics add a lot to it.
- 24 Would that use of Bayesian ideas and analysis
- 25 really have informed that Carvedilol

- 1 discussion, because again, they didn't specify
- 2 up front what that alternative hypothesis would
- 3 have been so, again, how does that use of
- 4 Bayesian statistics help us understand some of
- 5 these sort of subgroup or secondary endpoint
- 6 things that come before the group here?
- 7 DR. S. GOODMAN: That's a very
- 8 complicated question actually, it's a concise
- 9 question, and I will actually leave that
- 10 partially to Don to answer. But the Bayesian
- 11 approach to subgroup analysis and multiplicity
- 12 is fundamentally different than the frequentist
- 13 approach, and you can either model the
- 14 relationship between surrogate endpoints and
- 15 definitive endpoints, which could have been
- 16 done here, where they pick one as a primary,
- 17 pick one as the secondary, they're clearly
- 18 related, and you could look at the
- 19 relationship.
- 20 You can also look at the family of
- 21 subgroup analysts and say that they will model
- 22 their relationships, they will inform each
- 23 other, so you can either model them as
- 24 explicitly related in terms of mechanism
- 25 related, or you can say that they, that you

- 1 will model them as an ensemble together, and if
- 2 there are outliers, you sort of pull them back,
- 3 you don't believe outliers in the subgroup.
- 4 But Bayesian doesn't have a magic
- 5 solution to these subgroup analysis problems,
- 6 but they have more coherent approaches to
- 7 dealing with the problem, and Don will talk a
- 8 little bit more about that in design where the
- 9 issues of multiplicity are built directly in a
- 10 sense a priori.
- 11 But here the problem was already cast
- 12 in stone by the design and by the sort of
- 13 artifactual separation between secondary and
- 14 primary, and it didn't capture everything that
- 15 they knew about these endpoints, that was the
- 16 problem. But there was a lot going on in that
- 17 discussion that had nothing to do with what
- 18 they knew about the relationship of these
- 19 endpoints. It's actually a difficult issue.
- 20 DR. C. GOODMAN: Saty, one more and
- 21 then we'll move on.
- 22 DR. SATYA-MURTI: On the adult versus
- 23 child IDIG example, if I understand you
- 24 correctly, that would be an example where the
- 25 priors were set by clinicians who made a prior

- 1 belief using their experiential data to show
- 2 that so many children would be helped, correct,
- 3 and that was devoid of any statistical origins,
- 4 they just got together and set a prior; is that
- 5 right?
- 6 DR. S. GOODMAN: That actually was set
- 7 together with me and a pediatric neurologist,
- 8 but the judgment call there, and it wasn't
- 9 necessarily the only prior that we could have
- 10 come up with, came out of judgments about how
- 11 similar the treatment and the disease was in
- 12 adults and children, and other evidence I
- 13 didn't show you empirically showed how similar
- 14 those were. So it wasn't just looking at one
- 15 curve and saying okay, there's this other
- 16 curve. It was using multiple sources of
- 17 evidence to indicate, to relate to both the
- 18 disease and the treatment in adults and
- 19 children, and we had a continued conversation
- 20 about that.
- 21 DR. SATYA-MURTI: And that was your
- 22 alternative?
- 23 DR. S. GOODMAN: Based on evidence. I
- 24 mean, there was actual empirical evidence there
- 25 as a starting point. The evidence that brought

- 1 us from adults to kids, though, was softer, and
- 2 that's the crux of that issue.
- 3 DR. C. GOODMAN: Great. Thank you
- 4 very much, Steve, we appreciate your coming and
- 5 it was a splendid presentation.
- 6 Before we proceed, I know that
- 7 Dr. Prager came in a few minutes later, and Dr.
- 8 Prager, we need for you to introduce yourself
- 9 and declare whether you have any interests.
- 10 DR. PRAGER: My name is Joshua Prager.
- 11 I'm a full-time pain physician at UCLA. And I
- 12 guess the closest thing I have to a conflict,
- 13 which is kind of a coincidence here, is that 35
- 14 years ago I spent a full year studying Bayesian
- 15 statistics at Harvard, and I think it's just a
- 16 coincidence that I'm here in that regard, but I
- 17 haven't done anything with it in the last 35
- 18 years, so I guess I don't have a conflict.
- 19 DR. C. GOODMAN: Thank you, Dr.
- 20 Prager. I'm sure the Office of the Inspector
- 21 General will have a word with you on that.
- 22 Next, we're very pleased to have
- 23 Donald Berry from the Department of
- 24 Biostatistics at the University of Texas. Dr.
- 25 Berry, your name has been invoked at least a

- 1 half a dozen times in the last hour. We would
- 2 be delighted if you could condense your
- 3 presentation from 60 minutes to 50, if that's
- 4 possible.
- 5 DR. BERRY: Yes, sir, I'm nothing if
- 6 not adaptive.
- 7 So, I do have conflicts. I jointly
- 8 own with my son a company that does consulting,
- 9 essentially exclusively on Bayesian statistics.
- 10 And as Steve indicated, perhaps a more
- 11 important conflict, for 40 years I have been
- 12 talking about this question, so I have a
- 13 professional conflict, especially since for the
- 14 first 30 years nobody listened. They would say
- 15 things like, every time I listen to you talk,
- 16 Don, I become a Bayesian for ten minutes.
- 17 So my outline is, I will tell you a
- 18 little bit more about the Bayesian approach,
- 19 the current use of the Bayesian approach,
- 20 expanding somewhat on what Steve has so
- 21 eloquently said, what is Bayesian adaptive
- 22 design, predictive probabilities in design,
- 23 adaptive randomization including pairing drugs
- 24 and biomarkers, the way we have to go in
- 25 medical research and drug development for

- 1 example. And I'll tell you about I-SPY2, which
- 2 is a joint venture of the NCI, the FDA, a
- 3 consortium called the Foundation for the NIH,
- 4 which is funded by drug companies. Adaptive
- 5 dose finding, clinical utility. And CISNET.
- 6 CISNET is Cancer Intervention
- 7 Surveillance and Network and this is something
- 8 that was funded by the NIH, it was seven models
- 9 addressing the question of breast cancer
- 10 mortality reduction in the United States, what
- 11 was the cause, was it treatment, was it
- 12 screening, what combination, one of those
- 13 models was Bayesian, and I will tell you about
- 14 the use and the role.
- 15 Practical advantages of Bayes, online
- 16 learning, Steve talked a little bit about that,
- 17 I'll tell you a bit more.
- 18 Predictive probabilities. If there's
- 19 anything -- I mean, Steve indicated that
- 20 there's some things that frequentists can't do;
- 21 counter-frequentists can do essentially
- 22 anything. The problem is that you have to be,
- 23 you have to go outside of your philosophy in
- 24 order to do the clever things. Probably the
- 25 hardest thing that frequentists have to do is

- 1 predicting where they're going. They can say
- 2 if you know the parameter, if I can do a
- 3 prediction on the null hypothesis, I can do
- 4 predictions, I can say what the probability
- 5 distribution is of the future results, but the
- 6 parameters take it to be known.
- 7 It's only the Bayesian who can say on
- 8 the basis of what I know today, the parameter
- 9 has itself a distribution. I can put those two
- 10 pieces of information, the future uncertainty
- 11 and the current uncertainty together to talk
- 12 about what is the probability distribution of
- 13 the future results given where I am today. And
- 14 that helps in monitoring trials, that helps in
- 15 building trials that are efficient, and I will
- 16 give you some examples of that.
- 17 Modeling, of course, all statisticians
- 18 can do modeling, just an empirical observation,
- 19 and I guess all of them are empirical.
- 20 Bayesians do more modeling. You will hear
- 21 about some today, hierarchical modeling, for
- 22 example, longitudinal modeling in cancer, but
- 23 generally in medicine we err in looking at
- 24 endpoints that are different from one study to
- 25 another. So some are early endpoints in

- 1 cancer, in Phase II we look at tumor response
- 2 or progression-free survival, in Phase III we
- 3 look at overall survival, and never the twain
- 4 shall meet.
- 5 We've got to be modeling what happens
- 6 to an individual patient over time and looking
- 7 at things like tumor response and progression
- 8 and survival, but also biomarkers that come
- 9 into the equation, biomarkers could be thinking
- 10 more of a standard, like MRI, for example, but
- 11 also the various 'omics part of that revolution
- 12 and decision analysis, another practical
- 13 advantage of Bayes.
- 14 All right. This is Bayesian adaptive
- 15 science. At M.D. Anderson, my home institution
- 16 since I got there ten years ago, we have run
- 17 over 300 trials from this perspective, I think
- 18 that's probably more than the rest of the world
- 19 combined. Most of them were Phase I and Phase
- 20 II trials. As Dr. Salive indicated, the Center
- 21 of Devices at the FDA about 12 years ago
- 22 initiated a Bayesian approach following a
- 23 mandate from Congress to do things which are
- 24 so-called least burdensome, and they said oh,
- 25 Bayes. And recently in 2006, as he indicated,

- 1 with Bayesian guidance in the past 12 years
- 2 there have been over 20 PMAs that have been
- 3 approved and maybe five 10-Ks.
- 4 All of our drug companies are dabbling
- 5 at least in the area, doing Bayesian adaptive
- 6 designs and sometimes niche drugs. Other
- 7 companies such as Eli Lily, Wyeth, Novartis,
- 8 it's a substantial part of their portfolio that
- 9 they use in the early phases, adaptive Bayesian
- 10 design, and sometimes in Phase III trials and
- 11 hopefully more in Phase IV trials, which is
- 12 more the interest of CMS.
- 13 Some Bayesian device applications, and
- 14 I just have this for you to look through, some
- 15 areas in which the Bayesian approach has been
- 16 used in drugs. And just to contrast oncology
- 17 and migraine, in migraine the registration
- 18 endpoint is two hours pain-free, and so the
- 19 information that's available is essentially
- 20 instantaneous.
- 21 There's a small matter of the
- 22 logistics and the information flow, but -- I'm
- 23 joking about a small matter, it's not a small
- 24 matter -- but these things have been conquered
- 25 by many CROs, and you can get the data almost

- 1 instantaneously as to what the results are.
- 2 It's not clean results, it's not audited
- 3 results, it's not results that contain all of
- 4 the lab values, but it's the information that
- 5 we use, then, to say well, okay, what dose do
- 6 we want to use for the next patient that comes
- 7 in, for example, or are we done yet.
- 8 In oncology and many of these other
- 9 diseases, Alzheimer's, lupus, obesity, the
- 10 information is not immediate. And if it's
- 11 overall survival, for example, in cancer, even
- 12 if it's something as horrible as pancreatic
- 13 cancer, it's many months and maybe years before
- 14 the information accrues, and so that raises the
- 15 issue and need for doing longitudinal modeling.
- 16 These are in order, my understanding
- 17 of the way in which adaptive designs are used
- 18 in the world of drug development, medical
- 19 device development. The most common is the
- 20 early stopping, historically stopping for
- 21 efficacy, more recently and I think very
- 22 importantly, stopping for futility. Dose
- 23 finding is the second most common use of
- 24 Bayesian adaptive methods. Seamless phases,
- 25 where, you know, this notion that after a phase

- 1 of drug development we know the answer to some
- 2 question, we know the dose, you never know the
- dose. You have to recognize that and to move
- 4 seamlessly looking at toxicity.
- 5 Looking at efficacy throughout the
- 6 entire course in a seamless one-two, and a
- 7 seamless two-three, for example, is becoming
- 8 not exactly de rigueur but is very common.
- 9 Population finding, whom does my drug
- 10 help, which subset of the patient population
- 11 does my device work best in so that it has
- 12 clinical utility? Essentially everybody is
- 13 interested in this. It's an extremely
- 14 difficult thing to do inferentially,
- 15 scientifically, but people are doing it.
- 16 Adaptive randomization, this is
- 17 something that may be special for a clinical
- 18 hospital. At M.D. Anderson we've done many of
- 19 these trials where we base the next treatment
- 20 on how well that treatment and its competitor
- 21 treatments have been doing, not only
- 22 historically as you heard Steve talk about in
- 23 the prior presentation, but also in the trial.
- 24 So if a treatment is doing better, we assign it
- 25 with higher probability, and I will give you a

- 1 couple examples of that.
- 2 Ramping up accrual, and I thought this
- 3 would be a biggie in the pharmaceutical world
- 4 where you start out slowly, get information,
- 5 get some potentially promising results, and if
- 6 they're sufficiently promising, you open up to
- 7 other centers. And if not, well, you don't
- 8 continue in the smaller center or maybe
- 9 eventually stop for futility. You know,
- 10 putting in something -- I sometimes ask
- 11 investigators, okay, so what is going to be the
- 12 consequence of this trial? And they say -- I
- 13 say suppose such and such of data and they say
- 14 X. Or I say well, suppose thus and so are the
- 15 data, and they say X. They don't really know
- 16 why they're doing these trials. It's of course
- 17 a lot better in industry, but even there
- 18 putting together a coherent development within
- 19 a process, not necessarily a trial but a
- 20 process.
- 21 Anyway, the reason it's on the bottom
- 22 of the list is I was wrong, this has not been
- 23 adopted very widely. I know one trial where
- 24 they're doing that in industry. The reason is
- 25 that the rewards in industry are associated

- 1 with accruing as fast as you possibly can,
- 2 sometimes to the detriment of patients in the
- 3 trial, and there are plenty of examples of
- 4 that. And so it's difficult to persuade people
- 5 to go, you know, at a moderate rate for a time.
- 6 So just a little bit about updating
- 7 because I think it's so important. Steve
- 8 passed over something I wanted to show you.
- 9 Consider an example, simple example, paired
- 10 observations. Either the treatment does better
- 11 in the pair or the control does better in the
- 12 pair. So they're very simple in the sense that
- 13 the null hypothesis is like tossing a coin, a
- 14 fair coin, the probability of success that the
- 15 treatment wins the pair is a half, and you get
- 16 some data. And here are the, you know, 17
- 17 observations. The first two were successes,
- 18 then failure, then a couple successes and a
- 19 failure, et cetera.
- 20 The way the Bayesian approach works,
- 21 as Steve indicated, is you start with a prior
- 22 distribution, this is a non-informative flat
- 23 prior, it's a prior that for registration
- 24 purposes the FDA usually asks you to assume.
- 25 It pretends that you don't know anything.

- 1 After the first observation of empiric results
- 2 of the success and what the mechanics are, to
- 3 go from prior to posterior, you multiply the
- 4 probability of the data, which depends on the
- 5 parameter, which in this case is P, so you
- 6 multiply by P.
- 7 Then the next observation was another
- 8 success, you multiply by P again, P-squared
- 9 total, and then one minus P. I'm not
- 10 interested so much in the mechanics, you know,
- 11 how do you go from one point to the next. What
- 12 does interest me is that you can do it. You
- 13 can say this is what I know today, I just made
- 14 another observation and I've updated
- 15 accordingly. So with every observation, you
- 16 can describe what you know.
- 17 And as you know, in the frequentist
- 18 approach, the evidence is based on the
- 19 experiment, so you say what the experiment is
- 20 going to be and you follow the experiment and
- 21 then draw a conclusion, you know, do you get
- 22 statistical significance or not. The Bayesian
- 23 approach is much more flexible than that. So
- 24 just finishing, multiply by P, another P, one
- 25 minus P, et cetera. These are after ten

- 1 observations; what about the 11th? The 11th
- 2 observation I can tell you is going to be of
- 3 two types, either the pinkish color if you get
- 4 a success on the 11th pair, or the purplish
- 5 color if you get a failure on the 11th pair.
- 6 You know that's going to happen, either one or
- 7 the other. The beauty of the Bayesian approach
- 8 is you can say what the probabilities are of
- 9 those happening given what we know today, and
- 10 this is what we know today. So based on this,
- 11 what is the probability of a failure or a
- 12 success, and the answer is for those on
- 13 descending, the Laplace rule of succession,
- 14 there's a one-third chance of failure and a
- 15 two-thirds chance of success.
- 16 Predictive probabilities are
- 17 essentially monitoring trials for building good
- 18 experimental designs, efficient experimental
- 19 designs, and in my favorite clinical trial, as
- 20 he said, we must ask where we are and whither
- 21 we are tending. It applies in ordinary life
- 22 and it applies in clinical trials. He didn't
- 23 say, you know, it would be nice to ask where
- 24 we're going, he said you must ask whither you
- 25 are tending.

- 1 So this is the current distribution
- 2 after 17 observations and you can calculate
- 3 things like the probability of the treatment
- 4 being effective, the P is bigger than a half.
- 5 You can calculate the predictive probability
- 6 distribution in the same way that I indicated
- 7 before. Or doubling the sample size, suppose
- 8 if you've got 17 observations, you've got bare
- 9 significance in the 17 observations. If you
- 10 double the sample size, you get 34
- 11 observations, the predictive observations for
- 12 the next 17 is shown here in the upper
- 13 histogram.
- 14 The frequentist version of that, the
- 15 frequentists will say well, assume P is equal
- 16 to the maximum likely estimate, then I get this
- 17 distribution. You can also assume P is equal
- 18 to a half and get another distribution. All of
- 19 those distributions have less variability than
- 20 the right one, and it's because they
- 21 incorporate the variability in the future but
- 22 they don't incorporate the variability in the
- 23 current understanding of what is P.
- 24 So you can calculate, for example, the
- 25 probability of statistical significance after

- 1 you double the sample size is 88 percent, in
- 2 the case where you assume that P was equal to
- 3 the maximum likely estimate, it's 96 percent,
- 4 and 96 percent is woefully optimistic. Why do
- 5 people do Bayesian things? Smaller trials
- 6 usually, more accurate conclusions, and the
- 7 objective, of course there are different
- 8 objectives, but when we design a trial we say
- 9 what is the theme, what are we trying to do,
- 10 now let's build a trial using Bayes as a tool
- 11 that does that as efficiently as possible, and
- 12 one of the objectives can be treating patients
- 13 in the trial as efficiently and as good as
- 14 possible.
- 15 Predicting trial results, I will just
- 16 let you use this, let you check this out. An
- 17 important thing is that we model relationships
- 18 among the various endpoints and we do
- 19 simulation. Here is an example of a trial that
- 20 our monitoring committee met concerning, it
- 21 meets every year, or considers each trial every
- 22 year. This was the neoadjuvant Herceptin.
- 23 Herceptin is an antibody that targets for two
- 24 positive breast cancer and the Her2 oncogene
- 25 generally.

- 1 And for those of you who don't know,
- 2 it reverses the usual way you treat breast
- 3 cancer. Usually you take out the tumor and
- 4 then deliver a systemic hormone or chemo.
- 5 Neoadjuvant means you leave the tumor in,
- 6 deliver the systemic therapy first, and observe
- 7 the tumor and the effect of the treatment on
- 8 the tumor and then six months later, say,
- 9 remove the tumor or where the tumor once lived
- and send it to pathologists, and if they can't
- 11 find any tumor, that's call a pathologic
- 12 complete response, and that was the endpoint of
- 13 the trial.
- 14 The design of the trial was 82
- 15 patients in each group, 164 total. We met, the
- 16 data monitoring committee met after 20 percent
- 17 of the patients had been treated. Treatment
- 18 accrual was very slow for a number of reasons.
- 19 In the Herceptin arm the rate was 67 percent of
- 20 18 patients and the control arm was consistent
- 21 with what we had seen previously in our
- 22 institution of patients responding to this
- 23 therapy. And we said, you know, in view of
- 24 accrual, the rate of accrual and in view of the
- 25 importance of this question -- this predated

- 1 the, for those of you that know the story, this
- 2 predated the four adjuvant trials totaling
- 3 12,000 patients that would be announced at some
- 4 point, all being completely consistent with
- 5 these results, by the way.
- 6 And we did a Bayesian probability
- 7 calculation, predictive probability calculation
- 8 that said that after 164 patients, if we could
- 9 ever get there, which was going to be well into
- 10 the future, the probability of success was 95
- 11 percent and so let's stop the trial. We did.
- 12 It was submitted to ASCO and published in the
- 13 Journal of Clinical Oncology.
- 14 A purely statistical reason for the
- 15 sorry performance with drugs in Phase II, and
- 16 this is the usual power calculation, this is
- 17 traditional powering, you know, here's the null
- 18 hypothesis and this is the alternative
- 19 hypothesis, this is the power that we have for
- 20 detecting the alternative hypothesis. Where we
- 21 get the alternative hypothesis, nobody knows.
- 22 The statistician says talk to the clinician,
- 23 the clinician says talk to the statistician.
- 24 But this, it might be, for example, an
- 25 excellent likely estimate based on frequentist

- 1 data. If one were to say, what do we know
- 2 about the hypothesis, it may be that that's the
- 3 maximum likelihood value, but there's
- 4 uncertainty associated with it. Take this
- 5 uncertainty and consider the fact that maybe,
- 6 you know, the truth is down here. It has some
- 7 probability of being down here. And if it is
- 8 down there, the power is a lot less. Maybe
- 9 it's up here and if it is up here, the power is
- 10 a little bit more. The concavity of this curve
- 11 means that the true predictive power averaging
- 12 against the uncertainty is less. My rule of
- 13 thumb is for something that is 80 percent
- 14 power, I automatically give them credit for 60
- 15 percent, and then they have to deserve that.
- 16 So here is an example where they
- 17 didn't deserve it and I will just let you look
- 18 through the example. It was a stroke trial,
- 19 SAINT I had been conducted, had shown an odds
- 20 ratio of 1.2, so their actual likely estimate
- 21 in SAINT II was 1.2, and they built an 80
- 22 percent power to detect a 1.2 as opposed to 1,
- 23 and they increased the sample size in SAINT II
- 24 up to 3200 in order to achieve that.
- 25 In reading this paper in the New

- 1 England Journal, this is, as Steve said, this
- 2 is not the probability of the null hypothesis.
- 3 And people were saying at the time, well, if
- 4 the P value is .038, that's the probability
- 5 that SAINT II is going to fail, so this is
- 6 carrying it a step beyond the absurd.
- 7 And if you look at, this was for
- 8 modified ranking, if you look at the Barthel,
- 9 if you look at the stroke impact scale and all
- 10 the other things they did, they were not even
- 11 close to being significant. So they advertised
- 12 80 percent, naive reduction 60 percent, but
- 13 based on the other characteristics that I read
- 14 in the SAINT I paper, my probability that SAINT
- 15 II was going to be positive was 10 percent.
- 16 The Astra Zeneca statisticians when I presented
- 17 this, you know, was you're wrong, it's 80
- 18 percent. Well, I was right. I suppose I
- 19 wouldn't be telling you if I weren't right, but
- 20 the results from SAINT II did not meet its
- 21 primary outcome, and no further development is
- 22 planned.
- 23 So, the morals are to do predictive
- 24 power instead of power, but more importantly,
- 25 build in adaptive things. I mean, this trial

- 1 should have stopped for futility. When I first
- 2 presented this at an NCI conference, the
- 3 chairman of the data monitoring committee,
- 4 Stuart Polokoff was in the audience, and he
- 5 came up afterwards and said that you're exactly
- 6 right, we could see that the trial was going
- 7 south but we had no way that we could go about
- 8 getting out of this adaptive aspect and bail
- 9 out.
- 10 This is a trial just recently
- 11 published last month. It was a cancer group
- 12 that I design trials for breast cancer for.
- 13 This was a trial looking at capecitabine versus
- 14 standard therapy. The NCI said we had to do an
- 15 1800-patient trial and I said we can't, we
- 16 don't have that many patients, we could do 600
- 17 and that's probably going to be enough. And
- 18 they said no, you have to do an 1800-patient
- 19 trial.
- 20 So I built a Bayesian predictive
- 21 analysis, really a very liberal interim
- 22 analysis that would stop based on a prediction
- 23 that after some period of time we will know the
- 24 answer, so we would stop accrual at that point.
- 25 We wouldn't announce but we would stop accrual,

- 1 and we advertised the trial as not being a
- 2 600-patient trial, not being an 1800-patient
- 3 trial, but a trial with a sample size ranging
- 4 from 600 to 1800. But lo and behold, after 600
- 5 patients we did the predictive calculation.
- 6 Accrual was, you know, we frankly lied to the
- 7 NCI about what the accrual would be and, you
- 8 know, we were right in what we knew to be our
- 9 ability to accrue these patients. And after
- 10 600 patients had accrued we did this predictive
- 11 calculation, and you see that it says a
- 12 Bayesian statistical design was used with the
- 13 range in sample size here.
- 14 Interim analyses were not of the
- 15 standard type in which you cross a boundary and
- 16 declare victory or not. Rather, the decision
- 17 to discontinue enrollment was based on the
- 18 prediction that future follow-up was likely to
- 19 give a meaningful answer, and it did. And for
- 20 those of you interested in seeing the results,
- 21 here they are.
- 22 Adaptive randomization, I mentioned
- 23 that at M.D. Anderson we do a lot of trials
- 24 that have this characteristic, so here's a
- 25 simple three-armed trial. The PI, Francis

- 1 Giles, approached me about designing a trial in
- 2 AML. He said Ara-C, cytarabine is the standard
- 3 therapy in this disease, I would like to take
- 4 each of those arms and compare it to the
- 5 experimental therapy, troxacitabine, and so it
- 6 would be a three-armed trial, Phase II, and I
- 7 would like to have 25 patients per arm, 75
- 8 total. And I said okay, but why don't we look
- 9 at the data and if it's turning out that one of
- 10 the arms is doing better than another, we'll
- 11 give it higher probability, and if the
- 12 probability that it's better than the others is
- 13 sufficiently low, we will drop it. So he said
- 14 okay.
- 15 So we built in adaptive randomization
- 16 and this is the result of the trial. After the
- 17 24th patient had accrued, TI was doing
- 18 sufficiently poorly that we dropped it. And
- 19 after the 34th patient we stopped the trial
- 20 because TA dropped. And these are the data.
- 21 This is CR by date. Complete remission is
- 22 important, in fact, it's a registration
- 23 endpoint, and roughly speaking you don't live
- 24 if you don't get complete remission. And so
- 25 the standard therapy had what was quite similar

- 1 to the historical rate. TI dropped after five
- 2 patients with no CRs, and TA dropped after 11
- 3 patients with three CRs.
- 4 You know, we could calculate, as Steve
- 5 indicated, the completely perspective design.
- 6 We have calculated the false positive rate and
- 7 power. Maybe we made a mistake, but if we did,
- 8 it wasn't a very big one. I mean, if TI is
- 9 better than IA, it's not very much better. So
- 10 Giles sent this to the Journal of Blood, and
- 11 the editors said you can't do anything with
- 12 five patients, and I wanted him to write back
- 13 and say, you tell him if he gets this disease,
- 14 we have a treatment for him. But he's nicer
- 15 than I am, so he sent it to General Clinical
- 16 Oncology, and they said it was clear that the
- 17 design was a dud, but the design is wonderful
- 18 so we will publish your study.
- 19 I think I'll skip this factorial
- 20 design, I'll just tell you a little bit about
- 21 it. You've got it in your handout, you can
- 22 read. In cancer we do Phase I trials looking
- 23 at toxicity, we establish an MTD, a maximum
- 24 tolerated dose, and then go into Phase II.
- 25 This trial design combines the two, so we start

- 1 out, we walked up the dose ladder, it was a
- 2 very complicated dose ladder, you'll see two
- 3 dose ladders because there were two drugs and
- 4 there was a schedule of dosing concurrent
- 5 versus sequential so it was very complicated,
- 6 like a factorial design. Only within the
- 7 factorial design it's not a complete factorial,
- 8 we did it adaptively, walking up such that the
- 9 toxicity would allow us to walk up, but then
- 10 doing this adaptive randomization stuff in the
- 11 back. And so, we have a number of trials that
- 12 take this tack at Anderson and this is just to
- 13 show you how we do it.
- 14 I want to tell you I-SPY2, I-SPY2 is
- 15 this incredibly radical idea that we can look
- 16 at characteristics of patients that may be
- 17 responding to a therapy, that we in fact used
- 18 many therapies, there's a control therapy --
- 19 let me move forward.
- 20 This is a neoadjuvant breast cancer
- 21 again, high risk, stage two or three, and the
- 22 standard therapy is taxane-based. We used
- 23 that, but then on top of that add either
- 24 placebo or experimental agents. And the
- 25 experimental agent could be one of, somewhat

- 1 arbitrarily, five possibilities depending on
- 2 the accrual rate. One of the issues is we were
- 3 working with the Foundation for the NIH and the
- 4 drug companies, and the drug companies wanted
- 5 to get an answer reasonably quickly, so if the
- 6 accrual is slow we're not going to be able to
- 7 do five experimental arms.
- 8 Drugs come along, they get inserted
- 9 into the mix, so it's like a screening trial.
- 10 It's like a process rather than a trial. And
- 11 how big is it, it could go on forever, plugging
- 12 in additional drugs. As drugs show they're
- 13 either good or bad, they graduate or flunk out,
- 14 and if they graduate they graduate with a
- 15 diploma that says where they're good, you know,
- 16 what patients are benefitting from this
- 17 therapy. The primary endpoint is path CR,
- 18 although we of course relate to longer-term
- 19 endpoints such as survival. The surgery -- the
- 20 ultimate outcome for the primary endpoint is
- 21 six months, and that's reasonably rapid in
- 22 cancer but it's not fast enough for us.
- 23 We build in MRIs over time and look at
- 24 the tumor volume, and relate the tumor volume
- 25 to the ultimate endpoint, the path CR or not.

- 1 And so this is something that Bayesians do just
- 2 kind of naturally. They say what information
- 3 do I have about the patient, what does it tell
- 4 me about the ultimate outcome, and what do I
- 5 have from the patients that have been treated,
- 6 that are all through surgery based on what
- 7 their MRI results were, and did they experience
- 8 a path CR. So using all of that information, I
- 9 have a current patient who has an MRI volume
- 10 measured that concurs with the baseline, so
- 11 what do I predict for her path CR, is it going
- 12 to be a path CR or not, and what uncertainty is
- 13 associated with that, and the next MRI that she
- 14 gets will update that as well.
- 15 So the goal is to predict which
- 16 biomarker signatures predict response to which
- 17 drugs and combinations, model relationships
- 18 between baseline and longitudinal markers to
- 19 predict path CR. You will see that there are
- 20 many biomarkers, many kinds of possibilities.
- 21 False positives are rearing their heads all
- 22 over the place and we have to beat them down at
- 23 least to some extent. So there has to be at
- 24 least some level of confirmation.
- 25 Bayesians worry about multiplicities.

- 1 We graduate drugs and biomarkers to smaller
- 2 more focused Phase III. Instead of having a
- 3 3000-patient Phase III trial, we have a
- 4 300-patient Phase III going. The adaptive
- 5 design allows for learning, changing, adding
- 6 agents over time, uses a standard biomarker.
- 7 There are two kinds of biomarkers,
- 8 standard and qualifying, and we're working with
- 9 the FDA Center For Devices with respect to the
- 10 latter. With respect to the former, the
- 11 standard biomarkers have been approved and
- 12 these are the ones that are used to drive
- 13 treatment. We can't drive treatment off of the
- 14 qualifying biomarkers. It's conceivable that
- 15 the qualifying biomarkers would graduate into
- 16 the standard realm where we're using it for
- 17 treatment assignment, but if that happens it's
- 18 an amendment to the protocol, it's not in the
- 19 current protocol.
- 20 So, the FNIH was formed a long time
- 21 ago, I wanted to see if I could find it and I
- 22 couldn't, but the FNIH is a consortium of the
- 23 NCI, this is the cancer steering committee and
- 24 the FDA, and I think they said CMS, but I've
- 25 been dealing with this group a lot and I

- 1 haven't seen CMS there yet. But this is a
- 2 consortium that includes industry as well; in
- 3 fact the funding comes from industry as well as
- 4 foundations.
- 5 So the control is taxane-based. We
- 6 start off balancing, when a drug comes in we
- 7 randomize patients to that drug based on what
- 8 little information we have at the start and so
- 9 it gets balanced in a randomized balance
- 10 fashion. But as we get information we learn
- 11 which drugs are benefitting which patients and
- 12 if the probability is high enough for a
- 13 particular patient, she gets that drug with a
- 14 higher probability. We include combinations,
- 15 possibilities for combinations.
- 16 So these are the patient strata.
- 17 There are three biomarkers. One is HER2,
- 18 another is hormone receptor status, either
- 19 estrogen or progesterone receptor positive, and
- 20 the third is the MammaPrint, this is a 70-gene
- 21 profile that has been approved by the FDA for
- 22 prognosis and also prediction of response to
- 23 therapy.
- 24 And so there are eight slots. This is
- 25 just to give you a feeling from the previous

- 1 study, I-SPY1, where the patients fell in these
- 2 slides.
- 3 DR. C. GOODMAN: Don, about nine
- 4 minutes.
- 5 DR. BERRY: Nine minutes, okay. These
- 6 are path CR by bin, and the thing to notice
- 7 from this is that there's a good deal of
- 8 variability. I mean, a 17 percent probability
- 9 of path CR versus 67 percent probability of CR
- 10 in this portion of patients. So these are, the
- 11 experimental agents are going to have to do
- 12 better than these numbers or whatever the
- 13 control numbers are in the context of I-SPY2.
- 14 The interesting thing here for those
- 15 of you who know these numbers in breast cancer
- 16 is that the low numbers are the best diseases,
- 17 so there is kind of a paradox here. The
- 18 patients who do well, the ER positive patients,
- 19 HER2 negative patients, don't benefit much from
- 20 chemotherapy therapy, and that's true not only
- 21 in the neoadjuvant but also in the adjuvant
- 22 section.
- 23 And yet, they have a very low path CR
- 24 response to therapy -- I'm sorry. And yet,
- 25 they do very well -- let me start over. They

- 1 do very well in the long term, they live a long
- 2 time, but they don't respond very much to
- 3 chemotherapy. On the other hand, HER2
- 4 positive/ER negative, the worse disease to
- 5 have, except for treatments coming along to
- 6 help, but the most chemosensitive, so there's a
- 7 bit of a paradox.
- 8 I think I'll -- I have to get through
- 9 this rapidly. It's conceivable, I mean, if I
- 10 were to say -- let me back up. If I were to
- 11 say dear drug company, you have a good drug for
- 12 HER2 positive/HR positive, MammaPrint too, but
- 13 nothing else. They say go fly a kite, there's
- 14 only four percent of patients in that group.
- 15 So we have to have biomarker profiles that have
- 16 marketing appeal and we've reduced to like ten
- 17 of them, and we calculate for those profiles,
- 18 and you graduate within the profiles.
- 19 I'm going to skip to CISNET, because
- 20 CISNET is something CMS may be interested in,
- 21 this kind of concept. This is population
- 22 modeling. This is breast cancer mortality in
- 23 the United States and although we did the
- 24 analysis up through 2002, it continues to drop.
- 25 There was a 24 percent reduction between 1990

- 1 and 2000 and the question is why, and we
- 2 published a conclusion of our seven models,
- 3 Effect of Screening and Adjuvant Therapy on
- 4 Mortality From Breast Cancer in the United
- 5 States. There were seven population models.
- 6 We used common endpoints. The CDC, the NCI
- 7 opened their files and let us have all of the
- 8 data that they had about things like the use of
- 9 mammography, who used it when, the use of
- 10 things like hormonal therapy, the benefits of
- 11 chemotherapy, et cetera, stage of disease over
- 12 time.
- 13 And one of these models was Bayesian,
- 14 guess which one. This is mammography screening
- 15 over time, women ages 40 to 79, and you see
- 16 that in fact it was essentially unused in the
- 17 early '80s, started to come in in the mid '80s,
- 18 and up until 2000 when most women had at least
- 19 some screening mammograms. Adjuvant therapy
- 20 over time, again increasing at about the same
- 21 time. So this is a conundrum. We've got
- 22 screening increasing at about the same time
- 23 that therapy is increasing, are you going to be
- 24 able to separate out the two.
- 25 These were simulations from our model

- 1 and our model was based on fitting, so this was
- 2 much more complicated than Steve was
- 3 explaining. The likelihood is based on fitting
- 4 the actual data. We generate a million women,
- 5 give them the screening characteristics of the
- 6 day depending on their age, et cetera,
- 7 depending on when they had their last
- 8 mammogram. When they get cancer, we give them
- 9 the treatment of the day, et cetera.
- 10 And we of course don't know, from a
- 11 Bayesian perspective, we don't know any of
- 12 those things for sure. We don't know what the
- 13 benefit is of treatment, we don't know even
- 14 which treatment was given to which patient, but
- 15 we incorporate that uncertainty based on
- 16 parameters. We select a parameter value for
- 17 all of our eight or so parameters and then
- 18 generate a sample and if it agrees with the
- 19 mortality that was actually observed, we accept
- 20 it into our posterior distribution. And so --
- 21 and we do this again and again and again,
- 22 millions of times, and of course we don't get
- 23 many acceptances, we had in this case 66
- 24 simulations that were accepted, and that gave
- 25 us the ability to calculate posterior

- 1 distributions.
- 2 So here's one. This is tamoxifen,
- 3 this is efficacy versus effectiveness. So this
- 4 is from the clinical trials and it's like what
- 5 Steve said about the child versus the adult.
- 6 We said maybe going from a clinical trial
- 7 efficacy to actual clinical use effectiveness,
- 8 maybe it's not the same, so we'll discount.
- 9 And the way we discounted it was quite similar
- 10 to the way he did. We took the posterior
- 11 distribution from the Oxford overview and
- 12 inflated it by a factor of three. So this
- 13 distribution is much more spread, has much more
- 14 spread than does the actual data. The mean
- 15 reduction in hazard of mortality or death was
- 16 28 percent, and this represents the
- 17 distribution of those 66 observations just
- 18 looking at tamoxifen.
- 19 And the interesting thing here, I
- 20 mean, I expected that the effectiveness would
- 21 not be as great as efficacy. The interesting
- 22 thing is that the distribution actually shifted
- 23 to the right, which, if anything, suggests that
- 24 tamoxifen in actual use is more effective than
- 25 in the clinical trials. Of course you will

- 1 notice that the distribution is still very
- 2 spread out and that reflects the fact that we
- 3 don't have a great deal of information to draw
- 4 this conclusion.
- 5 For example, we don't have individual
- 6 women followed over time, it's all pieced
- 7 together. So I'm sure a lot of times -- these
- 8 are factorial runs to address what would happen
- 9 if we had all, you know, everybody would get
- 10 mammograms. This is apportioning the effects
- 11 of the interventions. Very interestingly, we
- 12 found no interaction, none of the models found
- 13 an interaction between screening and therapy.
- 14 This is our 66 models. Forget those
- 15 letters for a minute. And what we found was,
- 16 you know, for some of the models, some of those
- 17 66, there was very little benefit from
- 18 screening. This represents the uncertainty
- 19 associated with the effect of screening in this
- 20 direction, treatment in this direction, and
- 21 these other letters are the point estimates for
- 22 the other six models consistent with our model.
- 23 Our model was the only one that did this
- 24 variability. All the other models, because
- 25 they didn't have the Bayesian approach backing

- 1 them up, couldn't assess uncertainty the way
- 2 that we did, but their models fit perfectly,
- 3 and I suppose most anything would fit perfectly
- 4 with our conclusion, but fit perfectly with the
- 5 results.
- 6 So, those are the conclusions, and
- 7 this was my favorite quote from CNN,
- 8 statistical blitz helps pin down mammography
- 9 benefits, and then the New York Times
- 10 editorial, and I will stop there. Thank you.
- 11 DR. C. GOODMAN: Thank you very much,
- 12 Don. Before Don is allowed to depart the
- 13 podium, are there, is there a question or two
- 14 that is really important right now? We will
- 15 have another shot at Don later on today.
- 16 Anything at this point?
- 17 Don, I will just ask you one question.
- 18 You referred earlier to FDAMA and the least
- 19 burdensome approach invited in that
- 20 legislation, and I wonder, since 1997, I think
- 21 it was, has it been borne out that indeed
- 22 Bayesian approaches have contributed to least
- 23 burdensome or maybe even lesser burdensome
- 24 approaches, has that held up, and that might be
- 25 good for us to know with regard to how it might

- 1 help CMS.
- 2 DR. BERRY: So, it has. I wouldn't
- 3 say least burdensome, but certainly lesser
- 4 burdensome. So, we build designs for many of
- 5 these companies. There was for example, and it
- 6 relates to a catheter, a Biosense Webster panel
- 7 meeting, a cardiology panel meeting in November
- 8 where they had approached us. We built a
- 9 design for them based on their slow accrual
- 10 that would use this prediction, and the
- 11 original study was hardwired at 250. They went
- 12 to the FDA and got approval for their catheter
- 13 to prevent a-fib, and with 150 patients and
- 14 many of them having reached the nine-month
- 15 point based on prediction and based on the
- 16 early results.
- 17 In 2007, the number two medical
- 18 breakthrough according to Time magazine, not
- 19 that that's your -- you know -- was a sentinel
- 20 node biopsy, genetic assessment of lymph nodes
- 21 that we had built that, the Bayesian design
- 22 stopped as soon as it was allowed to stop, and
- 23 all of the hype is about the genetics, but the
- 24 hype wouldn't have been in 2007, it would have
- 25 been at a later time without the Bayesian

- 1 design. So I think it definitely has shown
- 2 lesser burdensome.
- 3 DR. C. GOODMAN: Good, thank you.
- 4 With that, thank you very much, Dr. Berry, very
- 5 helpful.
- 6 We are scheduled to take a 15-minute
- 7 break, we're a little bit behind, and I would
- 8 ask that we take, let's call it a ten-minute
- 9 break, which is about as much time as it takes
- 10 to get down the hall and come back. And
- 11 Dr. Lewis is up next, speaking in ten minutes,
- 12 and that would put us close to putting us back
- 13 on time. Thank you very much.
- 14 (Recess.)
- 15 DR. C. GOODMAN: Let's reconvene,
- 16 thank you for being prompt, and Dr. Lewis, the
- 17 podium is yours, sir.
- 18 DR. LEWIS: Great, thank you very
- 19 much. It's a pleasure to be here today. I'm
- 20 speaking on behalf of the Department of
- 21 Emergency Medicine at Harbor UCLA Medical
- 22 Center, the David Geffen School of Medicine at
- 23 UCLA, and the Los Angeles Biomedical Research
- 24 Institute. In addition to my formal employers,
- 25 I have a number of financial disclosures. I

- 1 work as a paid consultant to Berry Consultants
- 2 and as Don already mentioned, the focus of
- 3 Berry Consultants is Bayesian clinical trial
- 4 design and analysis, and I'm also involved as a
- 5 consultant for adaptive clinical trials for a
- 6 number of sponsors.
- 7 I'm going to talk a little bit about
- 8 Bayesian thinking in clinical care since that
- 9 was the title of the topic that was given to
- 10 me. I'm going to try to clarify some questions
- 11 regarding the components of the decision
- 12 process since one of the key challenges facing
- 13 CMS is making explicit decisions regarding
- 14 coverage. I'll talk about utility functions
- 15 and how they affect decisions or at least ought
- 16 to affect decisions. And then I'm going to
- 17 spend some time in a description of
- 18 hierarchical models and how those can be used
- 19 to integrate potentially heterogeneous
- 20 information from multiple sources in a way that
- 21 better informs the decisions that might be
- 22 made. And then finally, a few closing
- 23 thoughts.
- 24 In terms of examples of Bayesian
- 25 thinking in clinical care, the examples are

- 1 relatively sparse and most of them are quite
- 2 non-quantitative. For example, in making the
- 3 diagnosis of deep venous thrombosis, there are
- 4 a number of clinical studies. I just grabbed
- 5 one that was published back in 1997, this is
- 6 not the one that's most commonly in current
- 7 use, but under this system a number of risk
- 8 factors for this disease and physical findings
- 9 that are associated with the disease are given
- 10 a point value. The points are added up and
- 11 then based on the final score the patient is
- 12 assigned a probability of having this disease
- 13 that is qualitatively described as low
- 14 probability, moderate probability or high
- 15 probability.
- 16 Now in principle, this probability
- 17 assessment could be used as a posterior
- 18 probability if one was going to stop anyone's
- 19 medical evaluation of the patient at that
- 20 point, but in fact more commonly this
- 21 probability assessment system is used to create
- 22 a pretest probability or a prior that guides
- 23 both the selection of future diagnostic tests
- 24 or subsequent diagnostic tests and the
- 25 interpretation of those tests.

- 1 Similarly, for the diagnosis of
- 2 pulmonary embolism, which is closely related to
- 3 venous thrombotic disease, there are standard
- 4 clinical scoring systems that are used to
- 5 estimate the pretest or prior probability, and
- 6 that pretest probability is used to guide the
- 7 selection of tests. For example, a patient
- 8 with a lower pretest probability of a serum
- 9 D-dimer test may be felt to be adequate to
- 10 exclude the diagnosis if the test is negative.
- 11 But with a moderate or higher pretest
- 12 probability, one needs to test with a higher
- 13 negative predictive value or negative
- 14 likelihood ratio.
- 15 For example, a CT of the chest if
- 16 appropriately interpreted, in order to reduce
- 17 the upper limit of the probability interval for
- 18 the true probability of disease below some
- 19 level that is deemed clinically acceptable,
- 20 meaning there is some ill defined and often
- 21 unspoken upper limit to the final post-test
- 22 probability of disease that we believe is low
- 23 enough, so that we feel comfortable in stating
- 24 that we have clinically excluded the disease.
- 25 The selection of that upper limit of the

- 1 probability of disease is really based on
- 2 qualitative considerations that are usually
- 3 never defined and certainly aren't based on an
- 4 explicit cost benefit or other decision
- 5 analysis.
- 6 In terms of moving from these
- 7 qualitative assessments of probability in
- 8 clinical practice, which as I said are actually
- 9 quite limited, there has been a desire to at
- 10 least pretend that we use qualitative
- 11 assessments of probability in clinical
- 12 decision-making. Back in 1975, Fagan published
- 13 a nomogram which essentially is a graphical
- 14 method for doing a Bayesian calculation, in
- 15 which the pretest odds of the disease are
- 16 expressed on one axis, the likelihood ratio
- 17 which is related to the Bayes factor is
- 18 represented on another vertical axis, and you
- 19 can use this to graphically determine the
- 20 post-test probability.
- 21 So for example if one started with a
- 22 pretest probability of 30 percent and the
- 23 likelihood ratio for a negative test result was
- 24 .2, then your post-test probability would be
- 25 something around seven percent. You could have

- 1 a situation in which the pretest probability
- 2 was lower, say five percent, and with the same
- 3 test results your post-test probability would
- 4 be about one percent.
- 5 Every time I hear a lecture on
- 6 evidence-based medicine, someone will bring up
- 7 this slide, I stole this from someone, and I in
- 8 fact have never seen this ever used in clinical
- 9 practice, and I still practice about 15 hours a
- 10 week clinically in the emergency department.
- 11 There are a number of reasons for this. One is
- 12 the fact that defining pretest odds for an
- 13 individual patient is phenomenally difficult
- 14 and in fact, physicians have widely varying
- 15 opinions for a single patient. But moreover,
- 16 and I believe this is a key point that is
- 17 poorly appreciated, and I've actually seen
- 18 written, is the fact that most clinical
- 19 diagnostic strategies involve the sequential
- 20 application of tests whose results are likely
- 21 to be correlated.
- 22 And so even though you may hear that
- 23 the Bayesian approach allows sequential
- 24 application of Bayes factors to update
- 25 posterior probabilities, doing so requires an

- 1 understanding of the correlation between those
- 2 test results which virtually never exist in
- 3 clinical practice.
- 4 Moving now from the question of
- 5 estimating probability of diseases or
- 6 probabilities of a treatment effect to the
- 7 question of making decisions, how do you make a
- 8 decision if you have a posterior probability
- 9 distribution for the treatment effect? Well,
- 10 the components of a decision problem are
- 11 fourfold. The first is some sort of prior
- 12 belief or prior information regarding the
- 13 patient's disease state in the case of a
- 14 diagnostic test or a treatment effect, and
- 15 usually one also has some data or a test result
- 16 to use to update that prior information to
- 17 yield the posterior information, as has been
- 18 well described.
- 19 But in addition, a decision problem is
- 20 characterized by a set of possible actions that
- 21 one might take based on that information and
- 22 the goal is to make the best decision, for
- 23 example in selecting and initiating the
- 24 treatment for an individual patient, observing
- 25 a patient without treatment, or ordering an

- 1 additional diagnostic test. All three of those
- 2 possible actions commonly exist in clinical
- 3 practice.
- 4 The utility function, which is a key
- 5 and necessary component to the decision
- 6 problem, represents the value of taking a
- 7 particular action when the parameter of
- 8 interest, such as the presence or absence of
- 9 the disease state, has a specific value. As
- 10 mentioned initially in Dr. Goodman's
- 11 presentation, we often don't know whether the
- 12 patient has a specific disease, we know there's
- 13 signs and symptoms, and hope to be able to have
- 14 some probability estimates that they have a
- 15 particular disease. I'm going to try to make
- 16 this more concrete in a second.
- 17 The key concept in decision-making is
- 18 that we select the action or the treatment that
- 19 maximizes the expected utility, given our
- 20 current probability or current information for
- 21 the parameter of interest, for example, the
- 22 true treatment effect. In this case, expected
- 23 means averaged over our uncertainty in the true
- 24 treatment effect or our uncertainty in the
- 25 presence of a disease. And it is this use of

- 1 the expected utility that characterizes the
- 2 decision theoretic approach.
- 3 So as I mentioned, utility function is
- 4 the value or utility of selecting a particular
- 5 action, for example, a treatment or a
- 6 diagnostic strategy, given a particular
- 7 parameter value where one doesn't know that
- 8 parameter value -- I'm sorry -- where that
- 9 parameter value is assumed to be known although
- 10 in fact that is rarely the case. The utility
- 11 effect function should contain or should
- 12 capture multiple dimensions of the benefit or
- 13 harm to the patient associated with the
- 14 diagnostic or therapeutic strategy given their
- 15 true disease state.
- 16 There may be positive contributions,
- 17 such as improvements in patient outcome both
- 18 short and long term. There may be indirect
- 19 benefits to the community or society through
- 20 treatment of that patient, for example, through
- 21 vaccination. There may be negative
- 22 contributions, for example, financial costs,
- 23 side effects, complications or other associated
- 24 morbidity. Patient opportunity costs, the
- 25 patient may require time off work in order to

- 1 undergo a specific diagnostic approach or
- 2 treatment. And there are provider opportunity
- 3 costs, some treatments are very time consuming
- 4 and labor intensive on the part of the
- 5 provider, for example surgical approaches
- 6 versus medical approaches.
- 7 For a utility function to make sense,
- 8 all of these different contributions must be
- 9 able to be expressed on a common scale. Now
- 10 that is a key challenge to the use of utility
- 11 functions, but it forces the different
- 12 stakeholders to communicate in a common
- 13 language regarding the values of their positive
- 14 and negative contributions, and that's the kind
- 15 of discussion that clarifies the values that
- 16 are being brought to the table in making a
- 17 decision and adds to the transparency of any
- 18 decision that might be made, and that is a key
- 19 point.
- 20 So for example, here I've illustrated
- 21 a simple utility function and I just want to go
- 22 through this. For example, the patient either
- 23 does or does not have an epidural hematoma. An
- 24 epidural hematoma is a virtual universally
- 25 fatal bleeding of the arterial blood supply

- 1 around the brain. For example, this is the
- 2 disease that caused the death of Natasha
- 3 Richardson, and it may be present or absent
- 4 with the true disease state for the patient.
- 5 We have a decision to make. The
- 6 decision is either to obtain emergency computed
- 7 tomography of the head, a diagnostic approach
- 8 that was not available for Ms. Richardson, or
- 9 we may not obtain that test and therefore fail
- 10 to make the diagnosis and institute appropriate
- 11 and rapid surgical intervention. So for
- 12 example, if the disease state is that the
- 13 epidural hematoma is absent, then the utility
- 14 associated with obtaining a CT is a negative
- 15 number because there's some cost, in this case
- 16 it's largely financial cost, opportunity cost
- 17 and cost associated with the radiation exposure
- 18 to the patient and the incremental increase in
- 19 long-term cancer associated with that test. If
- 20 the epidural hematoma is absent and we do not
- 21 obtain the CT scan, the utility is zero because
- 22 we have incurred none of those costs. If,
- 23 however, the epidural hematoma -- I'm sorry --
- 24 so if it's absent, clearly the best action to
- 25 select is to not obtain the CT scan, because

- 1 that maximizes the utility under the assumption
- 2 that the epidural hematoma is absent.
- 3 In the alternative case where the
- 4 hematoma is present, getting the CT scan is
- 5 associated with a utility of minus 2500, and
- 6 I'm just making up these numbers, because in
- 7 addition to the cost of getting the CT scan and
- 8 those other costs associated with just the
- 9 test, in fact the patient is going to suffer
- 10 some additional morbidity and potential
- 11 mortality associated with the treatment of the
- 12 disease. So under this setting there is lots
- 13 and lots of costs associated with the
- 14 treatment.
- 15 However, if one does not obtain the CT
- 16 scan and misses the diagnosis, the patient will
- 17 virtually uniformly die or suffer permanent
- 18 neurologic sequelae and that's associated with
- 19 a very large negative utility. Under that
- 20 setting the optimal action is to obtain the CT
- 21 scan and to minimize the preventable morbidity
- 22 and mortality to the patient. That's pretty
- 23 straightforward.
- 24 But in real life we don't know until
- 25 the diagnostic test is performed whether the

- 1 epidural hematoma is present or absent, so we
- 2 must consider the expected utilities averaged
- 3 over our uncertainty in the diagnosis. So
- 4 let's pretend based on the patient's mechanism
- 5 of injury and additional presentation that our
- 6 probability of disease is 10 percent. So in
- 7 this setting before the scan is obtained, the
- 8 prior probability of epidural hematoma is 10
- 9 percent, there's a 90 percent probability that
- 10 the patient does not have this particular
- 11 injury. In that setting to calculate the
- 12 expected utility, one averages the actual
- 13 utilities associated with the action and the
- 14 disease over the actual probabilities that
- 15 you're in either of these columns based on the
- 16 presence or absence of disease.
- 17 So for example, if you have a 10
- 18 percent chance of incurring this utility if you
- 19 get a CT scan, that's a negative 2500, 90
- 20 percent of that is minus 450, you add them
- 21 together and your expected utility is this
- 22 number. If you do not obtain the CT scan you
- 23 have a 10 percent chance of incurring this
- 24 utility which would give you minus 25,000, 90
- 25 percent chance of zero, and this is your

- 1 expected utility.
- 2 In selecting the optimal action in
- 3 this setting, clearly one would select the
- 4 action that has the highest expected utility or
- 5 at least negative expected utility, and so you
- 6 would obtain a CT scan in the case in which
- 7 there is a 10 percent pretest probability,
- 8 prediagnostic probability of the epidural
- 9 hematoma. The point here is that the utility
- 10 function clarifies exactly what it is that
- 11 we're weighing in terms of the opportunity
- 12 costs, the financial costs, and one can explore
- 13 the ranges of pretest probability over which
- 14 the best expected utility is obtained by
- 15 ordering the CT scan.
- 16 So again, the key concept is that we
- 17 select the action that maximizes the expected
- 18 utility given the current probability
- 19 distribution for the parameter of interest. In
- 20 the case I just gave where the uncertainty was
- 21 simply a 10 percent versus a 90 percent
- 22 probability of an epidural hematoma, but in the
- 23 cases of considering treatment effect estimates
- 24 for real clinical trials, what we usually have
- 25 is a point estimate for that treatment effect.

- 1 So as Don has pointed out, we should really be
- 2 thinking about these point estimates in terms
- 3 of the total uncertainty in the true treatment
- 4 effect, uncertainty of those data, and that was
- 5 the principle that led to the routine
- 6 overestimation of power in a subsequent
- 7 clinical trial.
- 8 This is a slide that I will not cut
- 9 out because I always like it. In this case it
- 10 makes certain assumptions about the expected
- 11 utility associated with being assigned to the
- 12 placebo group. It reflects patients' continued
- 13 belief that it's always better to be in the
- 14 experimental arm, but that is not borne out by
- 15 the published literature.
- 16 Now I would like to move from the
- 17 theoretical issue of decision-making into the
- 18 consideration of heterogeneity of evidence, and
- 19 this is going to touch on the challenges of
- 20 integrating evidence from multiple clinical
- 21 trials that may be, for example, performed in
- 22 slightly different patient groups, from
- 23 different patients in terms of subclasses or
- 24 severity of disease, or even combining evidence
- 25 regarding similar but related treatments in the

- 1 same patient population. In all of these
- 2 cases, patients with the same disease may be
- 3 heterogeneous. There may be different
- 4 comorbidities, for example, presence or absence
- 5 of diabetes, hypertension, previous surgery, in
- 6 terms of severity of disease or the disease
- 7 subtypes. Sometimes those differences in
- 8 disease subtypes are known at the time of
- 9 clinical decision-making, sometimes they can
- 10 only be determined later in genetic analysis.
- 11 In addition, different treatments for
- 12 a single disease may have characteristics in
- 13 common. For example, there are classes of
- 14 pharmaceutical agents that based on mechanism
- 15 of action should be likely to work to similar
- 16 extents in similar patients. For medical
- 17 devices, for example, Fleming has a new medical
- 18 device that is in terms of mechanism of action
- 19 largely equivalent to current devices.
- 20 In each of those cases it is naive to
- 21 believe that we know nothing about the
- 22 effectiveness of the treatment in one patient
- 23 population or in one subclass of patients when
- 24 we know quite a lot about the effectiveness in
- 25 those others, and yet traditional statistical

- 1 methods are extremely poor in combining that
- 2 information in a way that is rigorous,
- 3 verifiable and transparent.
- 4 Some other clinicians borrow
- 5 information; we do this informally, secretly
- 6 and we never tell you about that, so we borrow
- 7 information all the time. For example, if we
- 8 see a patient who's different than the patients
- 9 that were enrolled in a clinical trial but have
- 10 some of the same characteristics, we routinely
- 11 extend the apparent indications based on that
- 12 clinical trial over to this new patient for a
- 13 new patient population.
- 14 We do that with treatment types. For
- 15 example, if we have one antihypertensive that
- 16 has been demonstrated to have benefit, we
- 17 assume that the new hypertensive will have a
- 18 similar benefit in the absence of any separate
- 19 evidence. We also do this in a way that is not
- 20 documented and is not quantitative.
- 21 Off label use is another example of
- 22 this. Some off label use is bad, some of it
- 23 makes perfect sense, and the challenge is being
- 24 able to tell the difference between the two.
- 25 However, traditional statistical methods,

- 1 frequentist statistical methods often but not
- 2 always take an all or none approach to
- 3 borrowing information across heterogeneous
- 4 patient populations, disease categories or
- 5 treatments.
- 6 In the case in which one takes an all
- 7 approach in which information is just grouped
- 8 from all patient populations together, think of
- 9 a fixed, like a meta-analysis. This approach
- 10 will fail to recognize subgroups that
- 11 experience different treatment effects or
- 12 complications. If one takes the no approach in
- 13 which you don't allow any pooling of
- 14 information from heterogeneous subgroups, you
- 15 will fail to recognize situations in which
- 16 there is compelling circumstantial evidence of
- 17 treatment efficacy in one group, for example a
- 18 group in which there is virtually no
- 19 independent data and yet there's lots of data
- 20 from those related groups that suggests
- 21 efficacy.
- 22 We also may lead to overestimation in
- 23 heterogeneity of treatment effect when we take
- 24 the none approach, so the common approach in
- 25 clinical trials in which we separate out the

- 1 treatment effect in each of the clinically
- 2 important and a priori defined subgroups may
- 3 overestimate the spread of the treatment effect
- 4 in those subgroups, and I'll give an example of
- 5 that in a second.
- 6 So the point that I want to make about
- 7 this before I get down to a picture of the
- 8 specifics is that the use of hierarchical
- 9 modeling and where this can be done in a
- 10 frequentist way, it is much better done using
- 11 the Bayesian approach and is much more
- 12 transparent and understandable with the
- 13 Bayesian approach. This provides a flexible
- 14 method for sharing information from potentially
- 15 heterogeneous groups to a degree that is
- 16 justified by the consistency of information
- 17 across the groups and by the limitations and
- 18 the amount of information available from each
- 19 group. So this allows you to share information
- 20 when it's appropriate without sharing
- 21 information when it is not appropriate. And
- 22 this can allow us to integrate information
- 23 across clinical trials, patient groups, disease
- 24 categories and treatments, and this is a key
- 25 technique that can be used for CMS to improve

- 1 the transparency and rigor of their coverage
- 2 decisions.
- 3 So let's look at the structure of our
- 4 hierarchical model. In this case I'm starting
- 5 the first level of my hierarchy with results
- 6 from three trials labeled trial A, B and C, and
- 7 in each case the trials have resulted in a
- 8 single point estimate for the clinical
- 9 treatment effect. Trial A appears to show some
- 10 harm, trial B shows an exactly null result, and
- 11 trial C, the point estimate falls to the right,
- 12 demonstrating some efficacy of the treatment.
- 13 So clearly looking at these trial results
- 14 they're qualitatively different, and the
- 15 question is how can we integrate this
- 16 information to determine whether this really
- 17 suggests there's a heterogeneity of treatment
- 18 effect or does this demonstrate that each of
- 19 the trials was too small to be convincing. In
- 20 each case we need to think of the actual
- 21 distribution of efficacies that are consistent
- 22 with the trial results.
- 23 In the second hierarchical model we
- 24 consider a hyperdistribution, which is the
- 25 distribution of the treatment effects within

- 1 models. Strictly speaking we are not assuming
- 2 that the patients within the trials are
- 3 exchangeable, we don't assume that a patient
- 4 enrolled in trial A would have met the strict
- 5 inclusion criteria for the patients in trial B,
- 6 but we are assuming that the trial results are
- 7 roughly measuring the same type of treatment
- 8 effect.
- 9 This hyperdistribution, there has to
- 10 be some prior information about that. We have
- 11 two priors at the third level of the hierarchy,
- 12 one measures the overall average treatment
- 13 effect or the center of this distribution and
- 14 one measures the variability, the width of
- 15 this. So we have some prior information about
- 16 how different we expect the average, I'm sorry,
- 17 the treatment effects of the different trials
- 18 to be, and it is going to be information about
- 19 this hyperdistribution that tells us things
- 20 both about the average effect of the treatment
- 21 and about the heterogeneity of the effect
- 22 across trials.
- 23 So the information from each of the
- 24 three trials informs the information about the
- 25 hyper distribution and what we end up with is,

- 1 for each of the three trials, a new estimate of
- 2 the treatment effect that takes into account
- 3 not only the information from each of the
- 4 trials and the strength of the evidence from
- 5 each of these three trials, but also our
- 6 beliefs regarding how similar the treatment
- 7 effect ought to have been among the three
- 8 trials.
- 9 And there's two key results here, and
- 10 it's important to understand their difference.
- 11 One is you get an estimate for the overall
- 12 average treatment effect of this treatment in
- 13 these three trials. Perhaps more importantly,
- 14 you obtain three separate estimates which are
- 15 better estimates of the true treatment effect
- 16 within each of the trials than you would have
- 17 obtained had you considered each of these three
- 18 trials separately, and that is a very deep and
- 19 important truth. It means that if these were
- 20 different patient populations, this estimate is
- 21 a better estimate for the true treatment effect
- 22 in this population than the estimate that you
- 23 got from that trial in isolation, and I would
- 24 love to take questions about that at the end.
- 25 This is an example of the James Stein

- 1 effect, and the James Stein effect works well
- 2 in different trials, a lot of different trials,
- 3 a lot of subgroups in trials, and it says that
- 4 if the treatment works equally well in all
- 5 subgroups, just naturally with statistical
- 6 variation, there will be some variability in
- 7 the treatment effect we observe in a clinical
- 8 trial. So even if the treatment works exactly
- 9 the same, there's going to be some spread in
- 10 the data. And yet ironically when we look at
- 11 clinical trial data and we look at the
- 12 treatment effect observed in different
- 13 subgroups, we take those numbers at face value
- 14 without ever accounting for that excess spread
- 15 which we know to occur. The James Stein
- 16 estimator, which is not a Bayesian concept but
- 17 can be addressed using Bayesian approaches,
- 18 uses that effect to get better estimates of the
- 19 treatment effect within subgroups.
- 20 So the James Stein principle says that
- 21 the best estimate of the true treatment effect
- 22 in a subgroup of patients within a clinical
- 23 trial is not the treatment effect observed in
- 24 that subgroup if there are three or more
- 25 subgroups. And this is a statement that unless

- 1 you thought about it for a long time, it ought
- 2 to bother you. If this does not bother you,
- 3 then I'm not explaining it well.
- 4 So here's an example of this. This is
- 5 a clinical trial performed at my institution
- 6 and it is a comparison of bag valve mask
- 7 ventilation or using a mask and resuscitation
- 8 bag versus endotracheal tube into the trachea.
- 9 In the out of hospital, so this is a paramedic
- 10 setting for critically ill or injured children,
- 11 this was conducted in Los Angeles and Orange
- 12 County, it was sponsored by what was then AHCPR
- 13 and a number of other federal agencies. It was
- 14 a relatively large study, especially for
- 15 treating critically ill and injured children in
- 16 the prehospital study, there were 830 children.
- 17 It was published in JAMA in about 2000.
- 18 So we compared endotracheal intubation
- 19 to bag valve mask ventilation and the primary
- 20 outcome was survival to hospital discharge
- 21 among these critically ill and injured
- 22 children. The overall results if you just
- 23 pooled all of the different subgroups of
- 24 patients in terms of their indication for
- 25 supplying airway intervention was that there

- 1 was no improvement in survival to hospital
- 2 discharge.
- 3 However, a number of clinicians felt
- 4 very strongly that different subgroups of
- 5 patients, for example children suffering from
- 6 poor respiratory arrest or from near drowning,
- 7 would be more likely to benefit from an airway
- 8 intervention since the cause of their severe
- 9 illness was primarily respiratory in nature.
- 10 So for example, this would distinguish them
- 11 from patients who suffered multiple trauma in
- 12 which the initial insult was not primarily
- 13 respiratory in nature.
- 14 And this is what we actually got from
- 15 the trial. So on this axis I have the
- 16 estimated odds ratio, so these are just point
- 17 estimates, and I have not included the
- 18 uncertainty which is quite broad for a number
- 19 of subgroups of patients which were defined
- 20 a priori in the protocol, so patients with
- 21 multiple trauma, traumatic brain injury, near
- 22 drowning, cardiopulmonary arrest, SIDS,
- 23 physical abuse, respiratory arrest. And so
- 24 these numbers are based on the typical
- 25 calculation of the odds ratio based on patients

- 1 only within each of the individual subgroups.
- 2 These data are slightly different from
- 3 the published data because the published data
- 4 allowed the patients to be members of multiple
- 5 subgroups and I couldn't do this, otherwise I'd
- 6 be double counting patients. If I instead use
- 7 a hierarchical Bayesian model, and for the
- 8 purists here I just used an empirical Bayes
- 9 approach just to make the point, I obtain new
- 10 estimates for the true treatment effect in each
- 11 of the subgroups that are much more tightly
- 12 clustered around the average treatment effect,
- 13 because this corrects for the James Stein
- 14 effect and gives me new improved estimates.
- 15 The irony here, and this should be
- 16 disturbing to anybody who looks at subgroups in
- 17 clinical trials, is that these are the numbers
- 18 that we report for the estimated treatment
- 19 effect, this is what's in the JAMA publication,
- 20 and these are in fact the best estimates. So
- 21 patients in whom it appeared there was evidence
- 22 of harm or benefit, in fact if you revise the
- 23 estimates to take into account this effect,
- 24 will show that there's essentially no estimates
- 25 of any benefit of this therapy in the

- 1 prehospital setting and there's some residual
- 2 benefit of harm with weak evidence in one
- 3 group.
- 4 So that just shows how for a published
- 5 clinical trial, how the use of a hierarchical
- 6 model can qualitatively change the conclusions
- 7 you would draw regarding the likely treatment
- 8 effect in clinically important subgroups. But
- 9 this use of hierarchical models can be used not
- 10 just in the setting of subgroups, it can be
- 11 used to integrate information either across
- 12 clinical trials, that was the first set of
- 13 graphs I showed, patient groups, that was the
- 14 subgroups, or even these categories or
- 15 treatments, which should be a key interest in
- 16 informing coverage decisions for CMS.
- 17 So you can take my original graph in
- 18 which I had three trials, and you can simply
- 19 relabel this as subgroup A, subgroup B and
- 20 subgroup C, that would be similar to the
- 21 results I showed for the pediatric airway
- 22 trial, or you can relabel it as diseases.
- 23 So for example, if you want the best
- 24 estimate of the effect of a single treatment in
- 25 several different disease types that are

- 1 thought to share some common mechanisms of
- 2 disease and therefore the mode of action for
- 3 the treatment, these estimates are actually
- 4 better estimates of the treatment effect in the
- 5 separate disease states than the separate
- 6 trials that you had access to. So these should
- 7 inform the coverage decisions rather than just
- 8 these in isolation.
- 9 Once more, you can picture a situation
- 10 where you initially had access to these two
- 11 trials, you made a coverage decision or you
- 12 made an assessment of the analysis, a new trial
- 13 comes along. This allows you a seamless and
- 14 transparent way to integrate that heterogeneous
- 15 information, again, only to the extent that it
- 16 is justified by the consistency of the data to
- 17 make an updated and a more informed decision.
- 18 So, my point here is that one can use
- 19 Bayesian models and hierarchical modeling
- 20 specifically to integrate information from a
- 21 number of sources in a way that is explicit and
- 22 transparent, and continuously updatable, to aid
- 23 decision-makers. But even that, the
- 24 decision-making, the availability of well
- 25 informed and transparent posterior probability

- 1 distributions doesn't make the decision for
- 2 you, it is the use of those probability
- 3 distributions to calculate the expected
- 4 utilities that allows you to make an informed
- 5 and defensible decision.
- 6 So the use of explicit expected
- 7 utilities where expected means averaged over
- 8 our true uncertainty using all available
- 9 information will allow the evaluation of
- 10 implications of different utility functions.
- 11 So for example, if you make a decision
- 12 regarding the use of a particular therapy and a
- 13 new treatment becomes available so that the
- 14 patients that don't receive the first therapy
- 15 now have a secondary treatment that changes
- 16 their expected outcome.
- 17 Think of the epidural hematoma case
- 18 for a second. The don't CT approach made the
- 19 assumption that without a CT the patient would
- 20 have the diagnosis remain undetected,
- 21 untreated, and the natural course of the
- 22 disease would ensue. If there was a secondary
- 23 diagnostic approach that became available, then
- 24 one could have that influence the expected
- 25 outcome for the patient who forgoes the CT

- 1 initially. So even with no new data on the
- 2 diagnostic accuracy of the first test, an
- 3 updating to the utility function could yield a
- 4 new and appropriate decision in light of new
- 5 information about alternative diagnostic
- 6 approaches and therapies.
- 7 The use of this approach to
- 8 decision-making allows the straightforward and
- 9 transparent incorporation of new data, so that
- 10 allows one to have a model of continuous
- 11 learning, which is something that is very
- 12 appealing if you don't want to redo all of your
- 13 analyses every time new evidence emerges
- 14 regarding each treatment. And it also allows
- 15 the appropriate incorporation of all available
- 16 information, for example via the hierarchical
- 17 modeling.
- 18 And in the last few minutes, what I
- 19 would like to do is draw a parallel between the
- 20 approach of adaptive clinical trials and an
- 21 adaptive and continuously learning approach to
- 22 clinical decision-making or the adoption of
- 23 clinical practice. So in adaptive clinical
- 24 trials we use the accumulating data to help us
- 25 guide the actual conduct of the clinical trial.

- 1 In a sense we're using the data as a compass on
- 2 how the trial ought to be conducted.
- 3 So almost everybody who talks about
- 4 adaptive clinical trials has a slide like this.
- 5 We begin with our data collection, we analyze
- 6 the data. If we don't need a predetermined
- 7 stopping rule we may revise our allocation
- 8 sampling rule, enroll more patients and then
- 9 analyze the data. And we keep growing in this
- 10 process until we meet our stopping rule, when
- 11 we are sufficiently sure that we have reached a
- 12 conclusion or if the trial is futile to
- 13 continue. And then once we meet the stopping
- 14 rule, we take our next step in the development
- 15 of the drug or device.
- 16 In the clinical adoption process the
- 17 way I would like to see it, we would consider
- 18 the outcomes supporting a diagnostic or
- 19 therapeutic approach, we analyze the available
- 20 data. We ask ourselves, is there sufficient
- 21 evidence to establish a standard of care. If
- 22 there is evidence, we can consider that a
- 23 standard of care is possible to perform this
- 24 measure. If there is not sufficient evidence,
- 25 we gather additional evidence or wait for

- 1 additional evidence to become available. That
- 2 evidence is subjected to the appropriate peer
- 3 review and publication processes and when the
- 4 new information is available, we can analyze
- 5 that. So this is a completely analogous
- 6 circular process of continual learning that
- 7 helps us guide our coverage decisions in a way
- 8 that is verifiable externally and transparent.
- 9 In terms of the things that I've
- 10 talked about up to this point, for example the
- 11 hierarchical model in the use of decision
- 12 functions, decision utility function, excuse
- 13 me, the process of analyzing available data in
- 14 my opinion should very frequently make use of
- 15 updatable hierarchical models, so we use all
- 16 the available information but only make pooling
- 17 decisions or sharing decisions from information
- 18 to the degree that is justified by the
- 19 consistency and quality of the data.
- 20 And then the process of deciding
- 21 whether the evidence is sufficient to establish
- 22 a standard of care really ought to be based on
- 23 a formal decision analysis in which the
- 24 utilities are there out in the open for
- 25 everybody to see and so that they can be

- 1 updated when additional treatment or diagnostic
- 2 options become available for the patients.
- 3 So just a couple of closing thoughts,
- 4 and I promised I would end a few minutes early.
- 5 The first is that although I was given the
- 6 topic of Bayesian thinking in clinical
- 7 decision-making, that's in fact a very rare
- 8 thing and except in a few settings, the use of
- 9 Bayesian reasoning in clinical practice is
- 10 qualitative and inexact at best. The utilities
- 11 that drive clinical decision-making are usually
- 12 ill defined, qualitative, and if one actually
- 13 looks at it, physician behavior doesn't even
- 14 reflect their own stated utilities. So there's
- 15 a lack of coherence in clinical decision-making
- 16 that is a fact of life in our current system.
- 17 In terms of coverage decisions,
- 18 however, poor decisions may be made when
- 19 knowledge and uncertainty in that knowledge is
- 20 not appropriately quantified. And the most
- 21 common of this that I think we should talk
- 22 about is failure to integrate information from
- 23 multiple sources in a way that is flexible and
- 24 justified according to the consistency of that
- 25 information, and also making decisions based on

- 1 utilities that have never been discussed
- 2 openly, in which the multiple components of the
- 3 utility function are never placed on a common
- 4 scale and that are not public and therefore
- 5 open to public scrutiny.
- 6 And the last point, which I didn't put
- 7 on the slide, has to do with keeping track of
- 8 the quality of the information that we're using
- 9 to update our posterior probabilities. Since I
- 10 have a minute here, I am struck by the use as a
- 11 quality measure, although no longer, of blood
- 12 cultures as a quality measure for treatment of
- 13 patients with community-acquired pneumonia
- 14 based on the use of observational data long
- 15 after it was apparent to everybody that the
- 16 results of the blood culture never influenced
- 17 the actual care provided to those patients.
- 18 The association between blood culture, the
- 19 obtaining of the blood culture and outcome of
- 20 those patients was an artifact of an
- 21 observational study design. The data never
- 22 justified drawing the conclusion, and this begs
- 23 the question, can we get back to the point
- 24 where the right people are discussing the right
- 25 questions.

- 1 And I'll stop there. Thank you very
- 2 much.
- 3 DR. C. GOODMAN: Thank you very much,
- 4 Dr. Lewis. Dr. Lewis, if you would just remain
- 5 at the podium for a moment or two. Yes, Mark,
- 6 a question for Dr. Lewis?
- 7 DR. HLATKY: I just want to clarify
- 8 this term hierarchical model, because it meant
- 9 something different to me coming into this
- 10 meeting than I'm hearing today, and I don't
- 11 know if I'm confused or if maybe other people
- 12 are confused too. My sense of it was that, you
- 13 know, this was a way of analyzing data when you
- 14 had like patients who were nested within
- 15 doctors who were nested within hospitals or
- 16 other kind of care institutions, and you needed
- 17 to take account of this hierarchy of where
- 18 people were. And the sense that I got from
- 19 your description is totally different. Is this
- 20 the same term applied to two different things
- 21 or is this actually the same thing or what?
- 22 DR. LEWIS: Well, first, I'm happy to
- 23 be asked a question that I can answer with,
- 24 we're both right. So hierarchical models are a
- 25 way of dealing with clustering of multiple

- 1 different types. As you correctly stated, the
- 2 clustering may be of patients within
- 3 physicians, physicians within health care
- 4 organizations, health care organizations within
- 5 funding types.
- 6 What I was focusing on here was a
- 7 situation in which the clustering was
- 8 clustering of patients within clinical trials
- 9 and then clinical trials were clustered within
- 10 another hierarchy. So the general approach
- 11 hierarchical modeling is a way of dealing with
- 12 data that has a hierarchical structure in terms
- 13 of the correlations and as I said, there can be
- 14 multiple correlations.
- 15 So the answer is no, this is not
- 16 completely different, it is exactly the same.
- 17 It just has to do with what the different
- 18 levels of the hierarchy represent.
- 19 DR. C. GOODMAN: Thank you.
- 20 Dr. Prager, and then we'll come back.
- 21 DR. PRAGER: I think it's well
- 22 documented that physicians are highly risk
- 23 averse, so that if you plug this into your
- 24 utility function you're either going to come
- 25 out with heavy values on the outcome or you

- 1 will be altering the prior probabilities in the
- 2 physician's head when making decisions. And
- 3 I'm wondering, which of the two do you think
- 4 that is, and a probably more important question
- 5 related to what we're doing here today is how
- 6 would any of this, including physician's risk
- 7 aversions plugged into this model, have any
- 8 applicability to the question we're asking
- 9 today about the use of Bayesian thinking in
- 10 CMS's whole structure?
- 11 DR. LEWIS: I have several different
- 12 thoughts on that and I will try to keep it
- 13 brief. The first has to do with the statement
- 14 that physicians are highly risk averse. The
- 15 degree to which many physicians are risk averse
- 16 is based on a nonquantitative understanding of
- 17 the different components of their utility
- 18 function. So I tried to make the point that
- 19 the utility function includes not just the cost
- 20 of the treatment of the illness, or for example
- 21 the likely negative utility associated with
- 22 missing a diagnosis and losing a subsequent
- 23 malpractice case. I happened to use a dollar
- 24 amount if we missed epidural at the current cap
- 25 on pain and suffering in California to try to

- 1 capture that, but we don't keep track of many
- 2 of these other costs, the utility costs when a
- 3 patient has to miss work and those sorts of
- 4 things.
- 5 So I think the first point is that for
- 6 diseases that are well characterized in terms
- 7 of the likely outcomes of making or missing a
- 8 diagnosis, just the explicit conclusion of all
- 9 of these different factors in the utility
- 10 function helps clarify the factors that we
- 11 ought to be balancing. I think that to the
- 12 extent that coverage decisions are made based
- 13 on utility functions, one can explore the range
- 14 of pretest probabilities, or I'm sorry, of
- 15 current probabilities of disease over which the
- 16 optimal action remains unchanged.
- 17 So in my simple example I pointed out
- 18 that with a pretest probability of .1, 10
- 19 percent, the optimal action was to do the
- 20 computed CT scan of the head. One can look at
- 21 how low the pretest probability of that disease
- 22 has to be before that's no longer the optimal
- 23 action, and that gives us a defensible way of
- 24 defining the upper limit for the posterior
- 25 probability of the disease, below which we

- 1 don't have to undergo that particular
- 2 diagnostic approach. So that allows a
- 3 transparency and a defensibility to those
- 4 limits that we currently lack.
- 5 When I asked my residents in training,
- 6 how low does the probability of a pulmonary
- 7 embolism have to be to not work it up, I get a
- 8 number of answers that aren't based on anything
- 9 other than what sounds like a small number to
- 10 them. And I think that the utility functions
- 11 that are developed in a publicly verifiable
- 12 setting will give some credence to setting
- 13 thresholds that are rational and that will
- 14 yield a better allocation of our scarce
- 15 resources to the diagnosis and treatment of
- 16 patients.
- 17 DR. C. GOODMAN: Thank you. Dr.
- 18 Dullum.
- 19 DR. DULLUM: I think you kind of
- 20 answered. I was going to ask, how do you
- 21 quantitate the utility function, and I think
- 22 you kind of just answered that, thank you.
- 23 DR. C. GOODMAN: I think Dr. Mock was
- 24 next.
- 25 DR. MOCK: I had a question along the

- 1 lines of applicability of your interface
- 2 between clinical and statistics. Specifically,
- 3 from your discussion and your experience, do
- 4 you palpably see a change in the practice
- 5 leading to improved outcomes and decreased
- 6 complications, and unnecessary expense in
- 7 medical care? What I mean by that, I wish that
- 8 you had used your DVT-PE example through the
- 9 presentation, I would have loved to have seen
- 10 you quantify those risks. But more
- 11 specifically, if you believe that decreased
- 12 variability increases efficiency, and if you
- 13 use your PE-DVT, do you see it applicable to
- 14 guidelines such as Milliman and Interqual where
- 15 we would decrease 50 physicians treating a
- 16 PE-DVT differently and have one way to treat
- 17 that patient to an improved outcome and
- 18 decreased complications?
- 19 DR. LEWIS: I think the answer is yes,
- 20 I see the role there, but physician behavior is
- 21 an explicit delineation of what the drivers of
- 22 that behavior is, and those are the components
- 23 of the utility function in conjunction with the
- 24 willingness of either regulatory agencies,
- 25 funders or specialty organizations to agree

- 1 upon those utility functions so they directly
- 2 lead to a threshold below which the appearing
- 3 treatment or diagnostic workup is not justified
- 4 by the risk of disease, and it requires both of
- 5 those.
- 6 So basically somebody has to say based
- 7 on our understanding of the likely outcomes of
- 8 this disease, both treated and untreated,
- 9 pulmonary embolism is a good example, treated
- 10 it has a very low morbidity and mortality,
- 11 untreated it has an extraordinarily high
- 12 mortality rate. So someone has to be willing
- 13 to say we believe that below a post-test
- 14 probability of one percent, and that's not
- 15 probably a good number, we don't think that the
- 16 workup is justified, and then we have to be
- 17 willing to update that as new information
- 18 regarding the burdens of treatment and the
- 19 alternative therapies become available.
- 20 So for example, and this is a very
- 21 simple example, when we moved from having to
- 22 use unfractionated Heparin by continuous drip
- 23 infusion in the inpatient setting to using low
- 24 molecular weight Heparin in an outpatient
- 25 setting, the cost associated with the treatment

- 1 went markedly down, both in terms of morbidity
- 2 and the actual hospitalization costs. That
- 3 should have changed our threshold of the
- 4 post-test probability for initiating empiric
- 5 therapy.
- 6 DR. COX: So then, we either regulate
- 7 or we align incentives financially to change
- 8 the behavior and the outcomes?
- 9 DR. LEWIS: Well, I would hope the
- 10 first step is identifying what is a rational
- 11 threshold and then aligning the incentive
- 12 activities along that rational threshold.
- 13 DR. C. GOODMAN: One last question
- 14 from Dr. Axelrod.
- 15 DR. AXELROD: Isn't -- throughout your
- 16 presentation you talk about when you combine
- 17 studies to the degree in which the data is
- 18 homogenous enough you can combine those
- 19 studies, and sort of inherent in that was those
- 20 priors that you put up there which you sort of
- 21 said, this is based on our best guesstimate of
- 22 it. And I think that one of the things for
- 23 those of us who don't do a lot of Bayes is that
- 24 concern about, you know, there are these two
- 25 big black boxes. And you know, I don't think

- 1 you can address all of it but perhaps you can
- 2 comment quickly on, you know, is there enough
- 3 that you can kind of reassure the panel that
- 4 that is not as much of a black box as it seems
- 5 to be based on your presentation.
- 6 DR. LEWIS: What I was trying to show
- 7 the panel is that it's possible to shine a
- 8 light in that black box, and the way to shine
- 9 the light in that black box is to make
- 10 different assumptions regarding a third level
- 11 of the hierarchy and to determine whether that
- 12 affects qualitatively the decisions one would
- 13 make based on the estimates of the second level
- 14 of hierarchy.
- 15 So for example, when colleagues that I
- 16 work with design an analysis or a clinical
- 17 trial that involves a hierarchical model, it is
- 18 absolutely routine to try markedly different
- 19 assumptions regarding the priors at the very
- 20 top level to demonstrate that with reasonable
- 21 sets of data that we might expect, that would
- 22 not lead to differences in the qualitative
- 23 decisions regarding, for example, presence or
- 24 absence of the treatment effect or the ordering
- 25 of the treatment effects in terms of their

- 1 relative efficacy. So you essentially do a
- 2 sensitivity analysis to demonstrate that that
- 3 choice is not what's driving your decision.
- 4 DR. C. GOODMAN: Thank you very much,
- 5 Dr. Lewis, very helpful.
- 6 Next is Dr. Sharon-Lise Normand, who's
- 7 going to address the application of Bayesian
- 8 concepts in public decision-making, and I think
- 9 we've already broached that topic a little bit,
- 10 Doctor.
- 11 DR. NORMAND: Thank you very much for
- 12 giving me the opportunity to speak today. In
- 13 terms of, I have no financial interests but in
- 14 terms of conflicts, I did serve on the FDA
- 15 circulatory system devices advisory panel which
- 16 did review some Bayesian applications. I am
- 17 working with the ADHA and the ACC on updating
- 18 their methodology for creating guidelines and
- 19 part of that is looking at Bayesian methods to
- 20 create the guidelines for evidence base. And
- 21 finally, I am currently working with the FDA in
- 22 the post-market surveillance setting in the
- 23 Centers for Devices and Radiologic Health, and
- 24 we utilize Bayesian methods.
- 25 So with that said, I'm going to talk a

- 1 little bit, present you today with two
- 2 problems, one is going to be a safety problem,
- 3 and the other one is going to be with the idea
- 4 of using a Bayesian inference to determine
- 5 whether medical devices should be adopted or
- 6 rejected. And in particular from a statistical
- 7 standpoint, I'm going to be focusing on the use
- 8 of Bayesian methods when you have sparse data,
- 9 which I hope will be apparent in a second,
- 10 uncertainty and heterogeneity, which Professor
- 11 Lewis just spoke about, and finally function of
- 12 parameters, and hopefully I will make that
- 13 clear for you in a moment.
- 14 So, I'm assuming some people in this
- 15 room are familiar with the following
- 16 meta-analysis, and I'm grateful for the first,
- 17 the previous speakers talking about
- 18 meta-analyses, looking at the effect of
- 19 Rosiglitazone on the risk of MI and death from
- 20 cardiovascular causes, and I'm going to pick
- 21 this particular meta-analysis as a starting
- 22 point to demonstrate some of the issues with
- 23 using a frequentist approach to meta-analysis,
- 24 and I've highlighted something you can't see,
- 25 but basically it's stating that there is indeed

- 1 a problem, there is a safety problem with using
- 2 Rosiglitazone.
- 3 So with the meta-analysis, I want to
- 4 emphasize two things, one is an observational
- 5 study, we didn't randomize which study could be
- 6 done, so the meta-analysis is actually an
- 7 observational study and we need to emphasize
- 8 that, and we found that some people might not
- 9 be familiar with that. And I have to thank Don
- 10 and Scott Berry, because I thought they were
- 11 competing with me in their earlier talks when
- 12 they talked a lot about meta-analysis, but
- 13 thank you anyhow.
- 14 In terms of meta-analysis to assess
- 15 safety, I want to highlight the difference in
- 16 the use of meta-analysis to assess safety as
- 17 opposed to using a meta-analysis to assess
- 18 effectiveness. And so one of the problems is,
- 19 unlike effectiveness, or less so than
- 20 effectiveness, the definition of safety across
- 21 studies varies much more, and I think that's
- 22 pretty well known. There have been some
- 23 studies that actually looked at that and said
- 24 indeed, you know, survival is survival, but if
- 25 we're looking at a safety endpoint that's not

- 1 survival, different studies have defined that
- 2 in different ways, so that's a particular
- 3 problem.
- 4 Therapies that increase safety risk
- 5 are systematically excluded from publication,
- 6 and again, that's a little bit different than
- 7 the Bayesians excluding studies where there is
- 8 no treatment effect finding. They are saying
- 9 that even if there's a safety problem and there
- 10 is a quality treatment effect, those studies
- 11 are excluded anyhow. And what I want to focus
- 12 on today in particular are low event rates, and
- 13 I'm going to talk about the event of an MI, a
- 14 heart attack.
- 15 So in some clinical trials or
- 16 meta-analyses, there will be zero MIs in both
- 17 treatment arms because there were two treatment
- 18 arms, and sometimes there's going to be zero
- 19 observed in only one of the treatment arms.
- 20 And how you handle this is critically important
- 21 and typically not something that people have
- 22 dealt with when you're looking at combining
- 23 information for effectiveness.
- 24 So here is a picture of the data for
- 25 the Rosiglitazone study and what I have on the

- 1 Y axis is the event rate of heart attack by
- 2 treatment arm, so on the Y axis it's the
- 3 control arm, or pardon me, the Y axis is the
- 4 Rosiglitazone arm, on the X axis it's the
- 5 control arm. Each number represents the
- 6 empiric event rate, a heart attack, in each of
- 7 those studies. And the first little circle, I
- 8 don't know if you can see that in red, but the
- 9 reds are studies in which there is at least
- 10 some -- there's some trials where there's no
- 11 events in either the whole study, or one arm,
- 12 and then blue is where we actually have
- 13 observed events.
- 14 Now you're going to notice, there's
- 15 fairly a lot of red diamonds, and what I
- 16 circled are the four studies in which there
- 17 were no events in both arms of the studies,
- 18 because each study had a control arm and a
- 19 Rosiglitazone arm. Now if I look at this, if I
- 20 look in this, there were only six studies in
- 21 the Rosiglitazone arm that had no events, no
- 22 heart attacks, and you can see the rate of
- 23 heart attacks in the control arm, in the
- 24 comparator control arm, so we have six of those
- 25 studies. You'll notice that we have 20 studies

- 1 where there is no event in the comparator arm
- 2 but there are events, that is adverse events,
- 3 heart attacks in the Rosiglitazone study. So
- 4 first of all you think, gee, there seem to be
- 5 more studies with more events in the
- 6 Rosiglitazone arm, which could be a function of
- 7 a lot of things.
- 8 So first of all, you're going to see
- 9 that it's difficult because you have zeroes and
- 10 how do you deal with those, you can't divide by
- 11 zero, how are we going to handle it. Well,
- 12 typically for example, I just wanted to
- 13 highlight the answer or the estimate that was
- 14 reported in this particular study, and that was
- 15 a NEJM article with 38 studies. Now I
- 16 neglected to say that there were 42 studies
- 17 overall, and so there were four studies that
- 18 had no events in either arm, to get to 38, so
- 19 that's apparently what the editors did, they
- 20 threw away the studies where there was no event
- 21 in either arm, so now we're down to 38 studies.
- 22 And so they actually did find if
- 23 you're going to do the P value thing that there
- 24 seems to be a safety signal with the use of
- 25 Rosiglitazone compared to the comparator arm,

- 1 with an odds ratio of about 1.4. So how do
- 2 people, and when I say people I'm going to talk
- 3 about lay people, and what I mean by that is
- 4 non-statisticians, typically in the past dealt
- 5 with this? Well, they do a number of things.
- 6 Either they drop their studies with zeroes or
- 7 they add a small correction, and so what they
- 8 will do is they'll add a small number less than
- 9 half, and so on a two-by-two table where we've
- 10 got the treatment arm, MI, no MI, the control
- 11 arm, MI, no MI, and we've got some zeroes in
- 12 that table, how do I fix that to actually
- 13 compute an odds ratio? Sometimes what they
- 14 will do is add a half to each level of that
- 15 table and that way I don't have to divide by
- 16 zero, I'm happy.
- 17 So that's one type of thing. You can
- 18 drop the studies with zero event and then just
- 19 add a half to those trials where there were
- 20 only events in one arm, and that would be 38
- 21 studies. And you can see if you do that, you
- 22 can see you get an odds ratio of 1.28, it's no
- 23 longer statistically significant, there is no
- 24 longer a meaningful P value, a signal that says
- 25 there is a real problem here in terms of

- 1 adverse events, meaning heart attacks.
- 2 Now what other people do is, let's
- 3 keep the zero events on it and add a small
- 4 correction. So if I keep all 42 studies you
- 5 can see I get an odds ratio of 1.26 and again,
- 6 by conventional P value criteria you would say
- 7 that there is no evidence of a safety problem
- 8 here.
- 9 Now here is the correct approach to
- 10 use and it's the Bayesian approach. Now that's
- 11 pretty bold of me to say, correct statistical
- 12 approach, but it's the approach, it happens to
- 13 be a Bayesian approach, and I'll talk a little
- 14 bit about it in a second. But it's one that
- 15 says okay, let's actually look at the
- 16 likelihood. You've heard about the likelihood
- 17 function from previous speakers, but what that
- 18 does is they're able to keep all the data. I'm
- 19 going to admit that in some studies I don't
- 20 believe the underlying risk is zero, but I'm
- 21 going to admit that indeed I can have a study
- 22 where actually I will observe no heart attacks,
- 23 and that's the sensible thing to do.
- 24 And if you do that, you average the 42
- 25 studies, and again if you look at the P value,

- 1 there's no difference, but if I could ask you
- 2 to focus your attention on the odds ratio, we
- 3 went from a statistically significant increased
- 4 risk of an adverse event with the use of
- 5 Rosiglitazone relative to comparators or
- 6 controlled groups, though all the other studies
- 7 showed no statistically significant P value
- 8 exceeding .05. But moreover, look at the point
- 9 estimates and how they change.
- 10 So what went wrong? Hopefully I can
- 11 give you some clues as to what went wrong. The
- 12 first thing in the paper, they said that they
- 13 excluded zero total heart attacks. Well, we
- 14 know that in reality, theoretically again, this
- 15 is not a quote, that if you've got a binomial
- 16 sample distribution which was the distribution
- 17 they assumed, you can't throw away zero
- 18 studies, it produces a bias. So, I don't mean
- 19 to pick on this and I will tell you this is
- 20 done over and over again, but in this
- 21 particular study they actually did this.
- 22 Now also if you think about it,
- 23 Professor Lewis talked about between study
- 24 variation, and so we have, let's say 42 trials,
- 25 and you could think of the 42 trials on the X

- 1 axis and where we'd have the risk of the
- 2 events, we have some with zeroes and some with
- 3 higher values, and artificially reduced the
- 4 true amount of between study variation by
- 5 locking up those studies with zeroes, so again,
- 6 you're artificially reducing the amount of
- 7 between study variation there is. Now this
- 8 actually leads to a cycle of errors when you
- 9 get to that stage.
- 10 In the particular study I'm reporting
- 11 on, they actually did something called a Peto
- 12 odds ratio, and I suspect they adopted this
- 13 type of odds ratio because it can accommodate
- 14 zeroes in one arm. It can't accommodate zeroes
- 15 within both arms but it can accommodate zeroes
- 16 within the one arm, but in fact this is known
- 17 to create bias when there's substantial
- 18 differences in the control sample sizes, and in
- 19 fact in these 42 studies there were huge
- 20 disparities in the number of participants in
- 21 the trial and control arm.
- 22 So again, they used something that was
- 23 known to be biased in this setting trying to
- 24 circumvent something, I think, that they felt
- 25 would be a difficult to get over. And in fact,

- 1 of the 42 studies, 25 percent had more in the
- 2 treated than the control group. And this is
- 3 why you are seeing fewer zeroes in the treated
- 4 arm, because there are definitely more patients
- 5 and the sample size is big enough to
- 6 accommodate an observation of an adverse event.
- 7 And then finally, by adding a small
- 8 number to the numerator or denominator, and by
- 9 that I mean adding a half to the two-by-two
- 10 table, that also can cause bias and in fact it
- 11 can even change the direction of the odds ratio
- 12 depending on certain distributions within the
- 13 tables. So you can actually go from, between
- 14 the treatment and control group, going from
- 15 something that is bigger than one to something
- 16 that is less than one.
- 17 So, lots of different problems in
- 18 reporting a very common treatment used in
- 19 practice that I certainly would say caused a
- 20 lot of concern from the FDA, and by the way,
- 21 the FDA did their own analysis and basically
- 22 agreed with these findings, again, not using
- 23 sort of Bayesian approaches to deal with the
- 24 fact that you can actually observe some zero
- 25 events, which is very common, and for some

- 1 reason they didn't take account of that.
- 2 And as I was just saying, it's not
- 3 just with Rosiglitazone that this happens, so I
- 4 have named a number of studies here that will
- 5 be affected, such as the hemoglobin-based blood
- 6 substitute that was reported in JAMA, again,
- 7 adding small corrections after certain zero
- 8 events. The FDA has done their own analyses of
- 9 antidepressant therapies and anti-epileptic
- 10 drugs, and again, they also reanalyzed the
- 11 Rosiglitazone.
- 12 So I just caution here that if one,
- 13 especially in the post-market studies, if we're
- 14 going to look at safety in the post-market
- 15 setting, that the reason people do
- 16 meta-analysis is because it's too small to find
- 17 a safety signal in many of these clinical
- 18 trials and so it makes sense, therefore, to do
- 19 a meta-analysis that can combine information
- 20 across clinical trials. But when we get down
- 21 to very rare events, using sort of ad hoc
- 22 methods to deal with sticky problems such as
- 23 zeroes, I believe that there have been some
- 24 very misplaced conclusions at least based on
- 25 the data in terms of looking at safety risks.

- 1 Now I'm going to talk about
- 2 arthroplasty, hip replacement systems. So, I
- 3 talked about meta-analysis, the fact that you
- 4 can do a Bayesian analysis that's going to
- 5 accommodate the zeroes, it's going to reflect
- 6 the uncertainty, it's going to admit to the
- 7 fact that you've got between study variation.
- 8 You're not going to reduce it because your
- 9 frequentist method doesn't know how to handle
- 10 the zeroes. And so then, that's the first
- 11 part.
- 12 The second part is aligned with, I
- 13 think a lot with the last piece of Professor
- 14 Lewis's discussion, and that is the idea of,
- 15 and I think we're going to see more and more of
- 16 this, combining data from multiple and diverse
- 17 data sources in order to invoke safety or
- 18 comparative effectiveness.
- 19 So I'm going to talk about
- 20 specifically hip replacement systems. In 2003
- 21 there were a lot of them in the U.S., about
- 22 200,000, and they were about \$25,000 a pop,
- 23 let's say, so it's an expensive procedure,
- 24 there are a lot of them, and we have every
- 25 reason to believe there will be a lot more.

- 1 And why do we believe that? Because people are
- 2 living longer, because there's more diabetes,
- 3 there's more obesity, so we have every reason
- 4 to believe that the use of these types of
- 5 devices will increase.
- 6 Now what type of devices are out
- 7 there? So we've got metal with polyethylene,
- 8 these are all ball and socket, we've got metal
- 9 on metal, and then we've got the newer ones
- 10 that actually require premarket applications,
- 11 sanding. So the metal on plastic, it was
- 12 about, let's say a thousand that were cleared
- 13 by the 510(k) path. Metal on metal, again,
- 14 let's also say 150 were cleared by the 510(k)
- 15 path. Now we're talking about ceramic on
- 16 ceramic that were first released in the U.S. in
- 17 2003, and ten premarket applications have been
- 18 approved.
- 19 Now if you think about hip replacement
- 20 devices, there's a lot of information that we
- 21 have short term, but what is really important
- 22 is long-term consequences and effectiveness of
- 23 these devices, because patients are living
- 24 longer, and now you've got real estate inside
- 25 your body and one really wants to get some

- 1 sense of how safe, how effective are they, and
- 2 we really don't have much data in the U.S. to
- 3 get these devices approved, as well as other
- 4 types of, let's say data that are selected in
- 5 the observational phase.
- 6 So let's call this the effectiveness
- 7 endpoint. That usually has been measured in
- 8 most clinical trials using a short, usually
- 9 one-page summary that you look at. Often one
- 10 looks at survivorship and that is what is the
- 11 time to hip revision that one looks at in
- 12 clinical trials. And then there is a whole
- 13 slew of adverse events that relate to sort of
- 14 the device in and of itself that may
- 15 subsequently lead to patient problems in terms
- 16 of what's actually happening to them. So there
- 17 could be a component where there is a breakage
- 18 that causes problems for the patient, and a lot
- 19 of these are going to have radiographic
- 20 evidence, some of them you don't.
- 21 So again, we've got three different
- 22 types of outcomes that we measure that we're
- 23 interested in, and I lumped these together as
- 24 adverse events, but you might want to look at
- 25 those separately. What type of data do we

- 1 have? Well, we have experimental data, which
- 2 is the preclinical data and the typical
- 3 clinical trial data, and there might be other
- 4 experimental data out there in terms of non,
- 5 let's say sponsored data that are out there.
- 6 Now when I say preclinical data,
- 7 currently the way, at least I know more about
- 8 the device side, but the way the device side
- 9 gets approved is that all of these paths are
- 10 followed. So you've got the laboratory tests
- 11 of how long the battery lasts and if it lasts
- 12 for ten years, it passes; is it rusting out
- 13 soon, it passes. And once it passes that
- 14 hurdle then you go to another hurdle and
- 15 there's information, and then you go to another
- 16 hurdle. And you might have animal information
- 17 and animal studies.
- 18 And once the device is passed or
- 19 failed, any further evidence is completely
- 20 ignored, and that is completely wrong. From a
- 21 Bayesian point of view, all of that information
- 22 needs to be continually integrated and updated.
- 23 If we didn't think any information, if we
- 24 thought information from animals were useless,
- 25 we wouldn't be subjecting those poor pigs to

- 1 whatever, you know, so obviously the
- 2 information contained in the animal studies is
- 3 helpful and so we need to integrate it.
- 4 So I'm going to step further and say
- 5 that we need to integrate all of the data,
- 6 human data and animal data. I'm not the first
- 7 person to suggest this; Bill Dumanchel
- 8 suggested this in terms of looking at toxin
- 9 exposures on lung disease and looked at the
- 10 various mice exposure studies as well as
- 11 information in people. And obviously there's a
- 12 limit there, but right now it's completely
- 13 forgotten about. So those are the experimental
- 14 data, data in a highly controlled setting which
- 15 we can use.
- 16 Then we come to observational data
- 17 once it's released, but outside of -- well, it
- 18 has to be once it's released because you
- 19 shouldn't have access to it otherwise. So
- 20 you've got FDA mandatory post-approval studies,
- 21 so you've got those data which in theory will
- 22 capture more complete information that would be
- 23 contained in other data sources such as the
- 24 Harris Hip Score, and those types of elements
- 25 are important.

- 1 There are some registries in the U.S.
- 2 that contain information, and although we're
- 3 now talking about hip replacement, the same
- 4 could be true with stents, with ICDs; I just
- 5 happened to take hip replacement as an example.
- 6 So there are a lot of registries that one could
- 7 capitalize on. Then there are registries with
- 8 administrative data. So of course CMS has data
- 9 in terms of the Medicare billing data, we have
- 10 in-hospital billing data. So there's a lot of
- 11 different data sources covering different
- 12 subpopulations, and the degree of precision or
- 13 completeness or breadth of those data vary by
- 14 their data sources, but nevertheless, they're
- 15 all informative.
- 16 And finally, there are data outside
- 17 these U.S. registries and in particular for the
- 18 example I'm talking about, which are hip
- 19 replacements, there is actually a registry in
- 20 Australia that has some pretty long follow-up
- 21 in terms of these particular devices.
- 22 So, lots of different data.
- 23 So, what's the practical consideration
- 24 as relates to multiple outcomes? I in the
- 25 first slide talked about effectiveness,

- 1 survivorship and adverse events. For some
- 2 reason people treat these as well, that's one
- 3 bucket, another bucket, another bucket, but
- 4 that's all information about evidence for the
- 5 adoption of a particular medical technology,
- 6 and more importantly, a single treatment may
- 7 have different effects or different outcomes,
- 8 so that's the reason why there may be multiple
- 9 outcomes.
- 10 Even though there's one clinical
- 11 outcome, Harris Hip Score, we know that primary
- 12 and secondary outcomes are always included with
- 13 the outcomes, but of course the point is the
- 14 different outcomes are correlated to the
- 15 subject and there may be different predictors
- 16 of the outcome depending on what the outcome
- 17 is.
- 18 And then an important point in terms
- 19 of using these very large and different data
- 20 sets is the possibility of missing data,
- 21 because not all outcomes are measured in every
- 22 study. So if we use CMS data, we know that the
- 23 Harris Hip Scores aren't there, so you could
- 24 think of it as a missing data problem.
- 25 There are multiple treatments, and

- 1 what I mean by that of course, we've got
- 2 devices, we've got classes of devices, and you
- 3 see these literally, we've got metal on metal,
- 4 we've got ceramic on ceramic, we've got metal
- 5 on plastic. We can think of companies, one
- 6 ceramic on ceramic, or two ceramic on ceramic,
- 7 so again, lots of heterogeneity. And the
- 8 question is do we as a group, are you going to
- 9 say okay, we are going to approve ceramic on
- 10 ceramic as a device or are we going to approve
- 11 company one, company two, I don't know the
- 12 policy.
- 13 But in any event, you can think of
- 14 these types of things, and there's also the
- 15 possibility of alternative treatments and that
- 16 is drugs. And so clearly in any clinical trial
- 17 there would not be a suitable comparison group,
- 18 and that also applies to multiple treatments.
- 19 The fact that we have product
- 20 synthesis, and what I mean by that is
- 21 observational data. Obviously these patients
- 22 aren't randomized and we've got to deal with
- 23 the selection issues.
- 24 And then of course we've got multiple
- 25 designs, and then we'd have to deal with

- 1 cross-design synthesis. We've got randomized
- 2 trials, we've got observational data. The
- 3 randomized trials are studies where the
- 4 individuals have been randomized but the number
- 5 of studies haven't been randomized, so we've
- 6 got all these problems.
- 7 We've got site effects, meaning there
- 8 might be some reason to think that the outcome
- 9 may vary by site, and again, it may be the
- 10 hospitalization, the threshold to hospitalize
- 11 somebody in Australia may be different than
- 12 here. Again, I'm making that up, but there may
- 13 be some reason to believe that some outcomes
- 14 may vary and maybe the association of the
- 15 technology might vary.
- 16 And also, of course there is the time
- 17 period, over what time period are we suspecting
- 18 the treatment might evolve over time.
- 19 So lots of practical considerations.
- 20 And in terms of trying to put all of these
- 21 together to borrow information, to learn about
- 22 outcomes that may not have been measured, or to
- 23 get more precise information for the subgroups
- 24 where perhaps in one data set you had much more
- 25 information than in others, I really can't

- 1 think of any other reasoning than to specify a
- 2 full probability model, and what I mean by that
- 3 is a Bayesian model.
- 4 So how do we use all of the evidence
- 5 to obtain more precise evidence of safety and
- 6 effectiveness of particular devices in
- 7 particular patients? And again, this is
- 8 related to Professor Lewis making the data
- 9 sources, rather than his diagram where in one
- 10 diagram it said clinical trials and another
- 11 diagram said subsequent. And I'm throwing
- 12 everything in together and basically saying
- 13 that's all the information, how do we combine
- 14 it in order to learn something.
- 15 So clearly we have to posit some
- 16 mechanism that generates the observed data.
- 17 And we're doing that, I'm saying we, the royal
- 18 we, each investigator is doing that separately
- 19 by saying this is the clinical data set we're
- 20 going to posit, this is the observational data
- 21 set that we're going to posit, and the animal
- 22 study, I'm going to posit that it's going to
- 23 give me information in order to infer
- 24 something. So people are positing something,
- 25 but then we have to posit some mechanism to

- 1 form a whole data set. And I'm going to say
- 2 that while some outcomes may be missing, we're
- 3 going to assume that these outcomes are
- 4 connected, and I'll show you what I mean.
- 5 Now I think I have one slide with a
- 6 Greek formula, and it's not meant to frighten
- 7 anybody or to say that it's too complicated. I
- 8 want to show you that there is lots of indices
- 9 here, and the reason why the indices here are
- 10 very important is because I want to enumerate
- 11 the number of different sources of information.
- 12 So we've got an outcome, so we've got
- 13 an outcome m, which may be effectiveness,
- 14 survivorship. I've got treatment k, which may
- 15 be ceramic on ceramic or it may be another one.
- 16 I've got a study, which could be very simple,
- 17 it could have been a particular study for
- 18 Medicare or a particular trial. And then we
- 19 have cohort, which may be dealing with a
- 20 subgroup within a trial or a Medicare cohort.
- 21 And then we've got study-specific outcomes and
- 22 then we've got the sampling error.
- 23 The point is that the study i, cohort
- 24 j, treatment k, and I've written something up
- 25 there in a very loose generic sense, because

- 1 I'm saying that the assumption is that the
- 2 outcome, suppose it's the Harris Hip Score is
- 3 greater than 70, I can model that with all this
- 4 together and say that somehow it might be
- 5 related, add it together to see if there is a
- 6 basis for changing the treatment, et cetera.
- 7 So there is a way of positing the underlying
- 8 model, and the point being that even though in
- 9 some studies I may not have empiric data like
- 10 the Harris Hip Score and the m equals one
- 11 outcome, I can use the information on those
- 12 other studies to infer about, you can think
- 13 about the missing outcome in the particular
- 14 study I'm interested in.
- 15 So we permit heterogeneity, and again,
- 16 this is something that we talked about, by
- 17 assuming distributions for the various
- 18 components of the model, and so we can see
- 19 effects due to outcome and treatment, we can
- 20 see effects due to patients, blah, blah, blah.
- 21 So there's lots of different effects curves
- 22 that we permit; we know all of these effect
- 23 curves, there's going to be some differences
- 24 and heterogeneity across the various studies.
- 25 So let me tell you why we should

- 1 define, and again, this was motivated in the
- 2 setting earlier, but let me tell you why we
- 3 should be thinking about this today in 2009.
- 4 Well, first of all, we now have the capability
- 5 and the statistical tools, both
- 6 methodologically as well as the capability, the
- 7 computational capability to analyze multiple
- 8 outcome measures on different scales, so lots
- 9 of different people are able to simultaneously
- 10 model a binary outcome, Harris Hip Score
- 11 greater than 70, what's my time to hip
- 12 revision, we can model those all at the same
- 13 time now, which is very different than
- 14 analyzing one outcome at a time, and there's
- 15 lots of reasons not to model one outcome at a
- 16 time, and it's mostly related to missing data.
- 17 But nevertheless, we can accommodate
- 18 the heterogeneity across studies and data
- 19 sources, and this is a key point, that
- 20 different data sources, different -- should I
- 21 ignore that red light?
- 22 DR. C. GOODMAN: You've got a few more
- 23 minutes.
- 24 DR. NORMAND: We can accommodate the
- 25 heterogeneity across studies, we can actually

- 1 combine information across studies within
- 2 multiple treatment options, and we can combine
- 3 now different types of studies, whether they're
- 4 randomized or observational. And so the idea
- 5 here is for more information from either some
- 6 studies, some databases, to more precisely
- 7 estimate treatment effects, and again, as I
- 8 said, that led to that table in there.
- 9 So let me conclude with, what are the
- 10 advantages of the Bayesian approach for
- 11 quantifying the evidence? And so the first
- 12 thing, it provides a coherent method for
- 13 synthesizing evidence. Now that sounds like a
- 14 highbrow comment, but it's very important
- 15 because it makes things very transparent.
- 16 Right now the model designs I don't believe in,
- 17 so let's modify it. I write down the model, I
- 18 know what the probability means in this
- 19 setting, it's pretty straightforward.
- 20 So it's this construction of natural
- 21 quantities of interest, although I didn't talk
- 22 about function of parameters, I can, or we
- 23 would estimate the specific class of device as
- 24 particularly unsafe or we can estimate the
- 25 probability that the safety risk is less than

- 1 two percent, so we can actually estimate those
- 2 things in a coherent framework. It does not
- 3 require the modeler to do assumptions, and now
- 4 you may say what, but it does not require
- 5 making strong statistical assumptions, because
- 6 right now if you don't combine the information,
- 7 either you're doing it qualitatively in which
- 8 you're not combining it, or if you are going to
- 9 combine it you do need a variation that would
- 10 be heroic and extremely solid method.
- 11 And also, if the studies with no
- 12 events provide no information, so again, that
- 13 was one assumption in the meta-analysis that I
- 14 showed you, and that's actually false. So in
- 15 this setting you can actually utilize studies
- 16 with some zero event arms.
- 17 And it eliminates the need for
- 18 approximations. Now a panel may not be so
- 19 interested in technicalities, but these are
- 20 quite important. And so if you have sort of a
- 21 complex model and you want to combine the
- 22 evidence in a coherent manner, I would have
- 23 thought that an estimate at the end of the
- 24 evidence analysis phase of how effective
- 25 something is, I'd have to provide you some

- 1 uncertainty attached to that, and if you don't
- 2 use a Bayesian approach you're doing some
- 3 approximations which are slippery to say the
- 4 least.
- 5 So the disadvantage I have listed here
- 6 is it requires more statistical knowledge and
- 7 expertise to implement than standard
- 8 approaches. And what I mean by that, I should
- 9 be very clear what I mean by that, I know that
- 10 right now almost anybody can fit a regression
- 11 model by, you know, using any software package.
- 12 It doesn't mean it's right, it doesn't mean you
- 13 actually have interpreted the P values
- 14 correctly. Again, because of the complexity,
- 15 you'd actually better know what you're doing,
- 16 so that's somewhat of a disadvantage that, you
- 17 know, I think it's somewhat of an advantage
- 18 having statisticians doing this, but in any
- 19 event that's one thing you really, you know --
- 20 you need expertise in Bayesian analysis, so let
- 21 me finish with that.
- 22 And finally, I would like to thank
- 23 some people that I've been working with. The
- 24 meta-analysis working group, we came together
- 25 independently simply to formulate zero event

- 1 trials and to do something virtually ad hoc
- 2 with the zero event arms of the various areas
- 3 that we worked in. I've looked at this from
- 4 the stent side and the thrombosis, and so we
- 5 looked at that. The hip replacement again, I
- 6 worked with the people at the FDA in the
- 7 surveillance branch, and again, I have some
- 8 funding from NIH to look at combined
- 9 multi-group conditions, and with that, I'll
- 10 stop.
- 11 DR. C. GOODMAN: Good. Thank you very
- 12 much, Dr. Normand. Can you go back to slide
- 13 20? You may need some AV help for that.
- 14 Questions from the panel at this point for Dr.
- 15 Normand? We have a few minutes before going to
- 16 break. Yes, Dr. Prager?
- 17 DR. PRAGER: I want to thank you for
- 18 really a good presentation, and I think the
- 19 choice of the hip is particularly pertinent
- 20 here. And give what you've been talking about,
- 21 I see a whole cadre of double-edged swords that
- 22 come up. And one of them is that we often, the
- 23 FDA often approves a therapy, let's say in this
- 24 case a hip, a specific hip replacement, without
- 25 long-term data, because often they're not

- 1 available. And so we don't know that if they
- 2 followed it for five years and at year seven
- 3 the hip completely degrades, we're left having
- 4 something approved that really doesn't have a
- 5 good outcome.
- 6 And so the question really comes for
- 7 CMS. If we're to use a model like this and
- 8 something becomes approved, how do we integrate
- 9 this model into looking at outcomes after we've
- 10 already been approving to go forward.
- 11 DR. NORMAND: It's a very important
- 12 question, and I am not an MBA person, but I
- 13 will say working with the FDA, they are
- 14 revamping, at least from the devices side,
- 15 post-market surveys, and so they are quite
- 16 aware. So the first part of the question, you
- 17 know, they are really thinking about doing the
- 18 full cycle now, always updating the information
- 19 now, so that's one.
- 20 The second piece of your question is,
- 21 we can only approve or make decisions on the
- 22 data you have available, and if you have no
- 23 long-term data available, again, you want to
- 24 look at as much information as you can, and you
- 25 could make predictions about what could happen.

- 1 But you have to have some long-term data
- 2 available, and that's why we study this
- 3 constant, you know, let's see what is happening
- 4 in the real world. So I think this is a
- 5 decision that's done at one time, so these are
- 6 things that need to be looked at, and again,
- 7 you can't look at everything, but there has to
- 8 be some prioritization that makes sense to make
- 9 sure one revisits and updates that.
- 10 DR. C. GOODMAN: Thank you.
- 11 Dr. Hlatky is next.
- 12 DR. HLATKY: Very interesting, thank
- 13 you. The thing I was struck by listening to
- 14 you talk about hip replacements is that there
- 15 are 900, or almost a thousand different models,
- 16 I guess, that have been approved under this
- 17 process. And so if one is looking at, I'm
- 18 assuming that, not knowing much about hip
- 19 replacements being a cardiologist, that some of
- 20 these devices may have device-specific problems
- 21 and other ones may have stuff that's within
- 22 your class. You talked specifically about the
- 23 class, but I'm wondering what happens if you
- 24 start seeing, I mean, how do you tease apart
- 25 how much of it is, you know, this specific

- 1 model is no good, versus this class is no good
- 2 or this manufacturer is no good?
- 3 DR. NORMAND: Again, that relates to,
- 4 although I said class in what I was saying,
- 5 because I don't think we have the data for the
- 6 nine studies, but pretend for the ten that have
- 7 just been actually approved, there are
- 8 device-specific information in those, and so
- 9 you could, if that law and all that stuff
- 10 permitted it, within the FDA they could look at
- 11 device-specific information. So again, that's
- 12 part of -- you know, right now we don't have
- 13 the ability because we don't have the
- 14 device-specific information, we only know that
- 15 a certain type, we know it's ceramic on ceramic
- 16 but we don't know if a device is made by
- 17 Company K.
- 18 So the answer to the question is we'll
- 19 have some information that's device-specific to
- 20 look at, other data we don't. And so we're
- 21 trying to borrow some information about the
- 22 similarity of the devices because there is some
- 23 similarity issues, and that's how we define it.
- 24 Something brand new and nothing related to the
- 25 past, that just doesn't happen. And so it's

- 1 like a demand of, thinking would be helpful
- 2 such as with, I don't know if you're familiar
- 3 with the STS and the target registries where
- 4 you have the device-specific names, and so it
- 5 could be addressed by having more information
- 6 that is device-specific.
- 7 DR. C. GOODMAN: Thank you. Yes, Dr.
- 8 Dullum.
- 9 DR. DULLUM: I was thinking that this
- 10 might be a benefit that CMS might look at
- 11 Bayesian techniques to, once you approve a
- 12 device such as the ICD, then there's always
- 13 ongoing interim analysis with the possibility
- 14 of disapproving it, I don't know if you ever
- 15 disapprove, but which would actually be
- 16 beneficial long term.
- 17 DR. NORMAND: In fact, part of the
- 18 Bayes factors that were talked about earlier by
- 19 Professor Goodman, where that information from
- 20 those enrolled in the clinical trials could be
- 21 combined with the observational registry data
- 22 that CMS has mandated for collection, and you
- 23 could look at it to get some Bayes factors and
- 24 say here are the numbers. Somebody has to bite
- 25 the bullet and say at that level it's a

- 1 problem, we're going to stop, but that
- 2 mechanism is definitely, we have the ability to
- 3 do that, and we clearly should be doing that.
- 4 We shouldn't stop, you know, again, it's always
- 5 updating, updating.
- 6 DR. C. GOODMAN: Dr. Normand, with
- 7 regard to the challenge that CMS might face
- 8 about how to account for or embrace some messy
- 9 body of evidence, you suggested in slide, I
- 10 think it was slide 16, you talked about an
- 11 approach to use all the evidence to obtain more
- 12 precise estimates of safety and effectiveness
- 13 for a particular technology, there it is. And
- 14 then you go to slide 20 and you talk about
- 15 having a coherent framework within which to
- 16 combine this super-sized evidence.
- 17 So, do the Bayesian approaches offer a
- 18 way for CMS to account for and accommodate
- 19 these messy bodies of evidence where it did not
- 20 have before? What's the kind of added value
- 21 for Bayesian for real world mixing bodies of
- 22 evidence?
- 23 DR. NORMAND: I'm going to say that
- 24 the advantages are, A, there is a way to
- 25 combine them using bonafide theoretically

- 1 proven formulas, it is not an approximation but
- 2 it's a theoretical and technical way to do it.
- 3 Number two, it makes it completely
- 4 transparent, and I think this is very key, this
- 5 is what we're assuming, whereas in looking at
- 6 analysis the way it's currently done, I think
- 7 those assumptions are not transparent.
- 8 I also think that it provides
- 9 evidence, I think that's the key thing. Okay,
- 10 you're doing things and you can only look at
- 11 the data that you have, good data. But when
- 12 you're doing that, you need to recognize in
- 13 your statistical approach the uncertainties
- 14 that are inherent in that. And I don't know
- 15 of, I think the Bayesian approach is a
- 16 framework that permits you to represent all of
- 17 that, where it's not clear you can do that in a
- 18 frequentist. Well, I could probably think of
- 19 one, but that would be a special case.
- 20 DR. C. GOODMAN: But you did just say
- 21 you need to know that you got good data.
- 22 DR. NORMAND: Yes.
- 23 DR. C. GOODMAN: So, does the Bayesian
- 24 approach allow us to interpret the available
- 25 evidence? I'm thinking in our more

- 1 conventional approaches we have ways to
- 2 interpret various levels of evidence, we have
- 3 evidence hierarchies, we've got various things
- 4 that show greater or lesser bias and so forth.
- 5 Does the Bayesian toolkit allow us to make a
- 6 similar or a better assessment of the quality
- 7 of this evidence, since you're vouching for
- 8 using almost all of it?
- 9 DR. NORMAND: While I'm vouching to
- 10 use all of it, you know, if you give me data
- 11 that's no good, I'm not going to use it. So
- 12 there's certainly a standard level of, you
- 13 know, the data elements are collected and
- 14 defined appropriately. No matter what the
- 15 method, you can't overcome bad data, so that's
- 16 the first statement.
- 17 What it would provide you with is the
- 18 type of things you want to be able to
- 19 interpret, that I would claim how you're
- 20 currently interpreting them is wrong. So
- 21 you're placing an emphasis on P values, which
- 22 you've had, you in general, in terms of
- 23 concluding what evidence you have available. I
- 24 think the type of the Bayesian approach in what
- 25 we've talked about today is prudent. I think

- 1 that everybody who speaks from a Bayesian point
- 2 of view is that it provides a precise summary
- 3 of the type of quantity you want, and that is,
- 4 what is the evidence. And so you could
- 5 combine, you do that with one data set or with
- 6 20 data sets, that's what I'm talking about.
- 7 So the general Bayesian thinking is
- 8 here's the evidence, these are exactly what you
- 9 want and need, and that's regardless of how you
- 10 combine everything. If you want to be better
- 11 than all the data that you have available and
- 12 it's relative good data, clean data, there is
- 13 no way to combine it in a format other than the
- 14 Bayesian way, because you need to adhere to,
- 15 there's lots of variation rules so that you
- 16 summarize it right.
- 17 DR. GOODMAN: Thank you very much.
- 18 We're going to break for lunch now, but
- 19 Dr. Normand, if you could keep in mind a
- 20 question that might arise later in the day,
- 21 which might be kind of a follow-on question,
- 22 which is: Okay, let's say you want to do this.
- 23 What would it take to operationalize this added
- 24 facility for the Agency to undertake Bayesian
- 25 approaches to evaluating evidence for coverage

- 1 decisions?
- 2 Thank you. This has been a great
- 3 morning. I wish I could get a few college
- 4 credits for it. I know it's a little bit after
- 5 noon, but if we could try to reconvene at
- 6 one o'clock, I know we're shaving a few minutes
- 7 off for lunch, and if Dr. Sanders would be
- 8 ready to ascend the stage to the podium at
- 9 one o'clock, that would be wonderful. So we
- 10 will see you all back at about one. Thank you
- 11 very much. An enlightening morning it was,
- 12 thank you very much.
- 13 (Luncheon recess.)
- 14 DR. C. GOODMAN: After our
- 15 enlightening morning and a fulfilling lunch, we
- 16 are going to move to a two-part presentation,
- 17 starting with Gillian Sanders from Duke, and
- 18 she will tag team with Don Berry once again,
- 19 looking at the meta-analyses of ICDs. Dr.
- 20 Sanders, if you would.
- 21 DR. SANDERS: Sure. As you heard this
- 22 morning, a few years back CMS expressed an
- 23 interest in exploring the advantages and
- 24 disadvantages of Bayesian methods in RCTs, and
- 25 particularly those in the CMS policy and

- 1 decision-making arena. So in collaboration
- 2 with AHRQ as partner with the Duke
- 3 Evidence-Based Practice Center, we performed a
- 4 systematic review of the literature and then
- 5 also used a case study to explore the use of
- 6 Bayesian methods in the CMS decision-making.
- 7 And together with CMS and AHRQ, we
- 8 chose the clinical debate of ICD therapy in the
- 9 prevention of sudden cardiac death, and it's
- 10 specifically the design of this case study that
- 11 I'm going to be talking about today. So just a
- 12 little bit of background. I'm not a Bayesian
- 13 statistician. My training is a Ph.D. in
- 14 medical schematics and I describe myself as a
- 15 medical decision analyst, and I really focus on
- 16 chronic disease modeling and then the
- 17 translation of these evidence-based models into
- 18 clinical practice and policy. I do, however,
- 19 in those policies use Bayesian methods
- 20 certainly to inform those decision models.
- 21 The collaborators on this project were
- 22 Lurdes Inoue, who's a matrix statistician based
- 23 at the University of Washington, who actually
- 24 trained with Don Berry. And then my colleagues
- 25 from Duke, Dave Matchar, Greg Samsa, Shalini

- 1 Kulasingam. Greg is here today and available
- 2 to help with questions as well.
- 3 So, as any evidence-based practices
- 4 center review, it's guided by the feedback and
- 5 expertise from a technical expert panel. And
- 6 so here you will see the ones that were
- 7 associated with this project. On the left side
- 8 are eight investigators from the clinical
- 9 trials that we actually included in our
- 10 analysis, and then the other side are some,
- 11 four other members that represented some
- 12 statistical expertise in addition.
- 13 So as many of you know, sudden cardiac
- 14 death is the most common cause of death in the
- 15 U.S. and it accounts for up to 350,000 deaths
- 16 per year. Each year sudden cardiac death
- 17 claims the lives of more people than stroke,
- 18 lung cancer, breast cancer and AIDS combined.
- 19 And although the overall number of cardiac
- 20 deaths has decreased over the past decade, the
- 21 proportion of these cardiac deaths that are
- 22 sudden has increased. Of note here today, over
- 23 80 percent of sudden cardiac deaths occur in
- 24 patients that are 65 years and older,
- 25 highlighting particular interest to the CMS.

- 1 Fortunately there's ways to prevent
- 2 sudden cardiac death. The implantable cardiac
- 3 defibrillator, or the ICD, is a device that
- 4 monitors the heart rhythms and delivers shocks
- 5 if these rhythms are detected. There's been
- 6 several clinical trials on ICD therapy, and
- 7 it's been demonstrated that their use can
- 8 significantly reduce mortality, and it's
- 9 currently the most effective therapy for
- 10 preventing sudden cardiac death. The
- 11 magnitude, however, of the effectiveness of the
- 12 ICD in clinically identified subgroups is
- 13 currently unclear.
- 14 In addition, ICD therapy is quite
- 15 expensive. Current CMS reimbursement is about
- 16 \$30,000 per device implantation. And so
- 17 although evaluations of ICD cost effectiveness
- 18 by our group and by others have in general
- 19 demonstrated that the ICD is a valuable use of
- 20 our health care dollars, there are several
- 21 researchers and policy makers that certainly
- 22 looked at whether there could be ways of risk
- 23 stratifying the patients further to increase
- 24 the benefit and value of ICD placement.
- 25 In addition, the ICD represents a

- 1 clinical domain and intervention which CMS has
- 2 evaluated several times over the last two
- 3 decades. Currently CMS only covers evidence
- 4 development concerning these devices in the
- 5 primary prevention of sudden cardiac death,
- 6 which reflects really the uncertainty of
- 7 several clinical policy questions.
- 8 So, this table shows some of the major
- 9 ICD RCTs and their timing, each column
- 10 represents a trial and -- I'm sorry, each trial
- 11 is a row, and then the columns are the years in
- 12 which the trial was ongoing. Those in green
- 13 are considered secondary prevention trials;
- 14 these are trials where the patient actually has
- 15 physically experienced sudden cardiac arrest
- 16 and therefore were at high risk for recurrent
- 17 events.
- 18 Unfortunately, most people don't
- 19 actually survive that original event, and so
- 20 the latter analyses and clinical trials were
- 21 really looking at what's considered primary
- 22 prevention of sudden cardiac death, and these
- 23 are patients that are at increased risk
- 24 compared to the general population but who
- 25 haven't had a previous ventricular event.

- 1 In yellow here, I see there when the
- 2 findings in these trials were actually made
- 3 available and published, so that these could
- 4 then potentially be available for subsequent
- 5 trial design. For the analysis which I will
- 6 discuss here today, we received access to the
- 7 patient level data from eight of these trials,
- 8 namely all of them except for the CIDS and the
- 9 DINAMIT trial.
- 10 This table shows the clinical
- 11 characteristics for the eight trials considered
- 12 in our case study. There's a lot of
- 13 information here so I'm just going to highlight
- 14 a few things. First, note that the trials
- 15 considered in the case study differed in sample
- 16 size, with the smallest trial being MADIT-I,
- 17 having 196 patients, and the largest being
- 18 SCD-HEFT with 1,676 randomized to either ICD or
- 19 control.
- 20 Moreover, there are different
- 21 propositions across the trials. So for
- 22 example, some trials such as CABG, MADIT-I and
- 23 II, and MUSTT only have ischemic patients in
- 24 their populations, while the DEFINITE trial
- 25 only included nonischemic patients. The median

- 1 age range was from 57 up to 65 years of age,
- 2 and the ejection fraction ranged from 20
- 3 percent in the DEFINITE trial up to 45 percent
- 4 in CASH.
- 5 And as you can see, the distribution
- 6 in the heart failure classes, it varies quite
- 7 widely but overall Class IV patients are very
- 8 poorly represented in the available trials.
- 9 In our analysis, CMS and AHRQ were
- 10 also interested in whether Bayesian methods
- 11 could be used in evaluating their registry
- 12 data. So we then borrowed data from the
- 13 ACC-NCDR ICD registry which was formed in 2005
- 14 following CMS's coverage development for ICD
- 15 therapy. The registry data collection process
- 16 covered over 130 different data elements, the
- 17 type of initial ICD implant, device upgrades,
- 18 and then also device replacements, and the data
- 19 we had access to was about 120,000 implants
- 20 between January of 2005 and June of 2007, and
- 21 the characteristics of the patients are
- 22 represented here.
- 23 Now compared to the patients that were
- 24 recruited to the actual ICD trials, the
- 25 registry patients are older and they actually

- 1 have worse prognosis. Also, note that the
- 2 registry data are only for ICD patients, that
- 3 is, we don't have a control arm. And also,
- 4 currently the ICD registry does not have
- 5 follow-up information regarding the patient's
- 6 overall survival after discharge.
- 7 And so for the purpose of illustration
- 8 in our analysis here, we actually used registry
- 9 data from the MUSTT study which had survival
- 10 data associated with it to look at the survival
- 11 comparators in the clinical trials and registry
- 12 data, and I'll describe the method and issues
- 13 later when I get to those results.
- 14 So as I mentioned, even with existing
- 15 RCT evidence there are several clinical and
- 16 policy questions that have been remaining
- 17 unanswered. So this shows some of the
- 18 questions that we looked at in our analysis.
- 19 We looked at these both from a frequentist
- 20 approach and then also using Bayesian methods.
- 21 The major questions are: Are the patients
- 22 within the trials similar? Is there evidence
- 23 that the devices used in the different trials
- 24 differ in terms of their efficacies? Is there
- 25 evidence that the ICD is effective in

- 1 particular patient subgroups? And can Bayesian
- 2 methods be used to say anything about prognosis
- 3 of patients within the ICD registry?
- 4 I will describe briefly some of the
- 5 methods we used in our case study. As I
- 6 mentioned, we considered patient level data
- 7 from eight trials, namely MADIT-I and II,
- 8 MUSTT, DEFINITE, SCD-HEFT, AVID, CASH and CABG.
- 9 We used overall survival as the primary
- 10 outcome, and the treatments considered were ICD
- 11 with controls. The studies now seem to focus
- 12 on four prognostic variables; these were age,
- 13 ejection fraction, the New York Heart
- 14 Association class, and the presence of ischemic
- 15 disease. Now there are certainly other
- 16 prognostic variables that may be as closely
- 17 important, for example, the cure interval or
- 18 time from MI, and we had a reviewer actually
- 19 explore these additional factors, but we really
- 20 wanted in this situation to explore the use of
- 21 the methods.
- 22 So we performed four sets of analyses,
- 23 so we used the data from individual trials,
- 24 combining data from all trials, the use of
- 25 registry data, and then to validate the impact

- 1 we had access to aggregate versus patient level
- 2 data. Given our time constraints today, I'm
- 3 just going to skip over our analysis of the
- 4 individual trials and instead focus on the
- 5 remaining three sets of analyses.
- 6 In our analysis of data combining all
- 7 trials we used both frequentist and Bayesian
- 8 techniques to find data, we made adjustments
- 9 for potential trial effects, adjusted for trial
- 10 effects using fixed or random effects, and
- 11 assuming trial-specific baseline hazard
- 12 functions. Throughout our combined trials
- 13 analyses we used the frequentist data as the
- 14 priors we used in the Bayesian analyses. In
- 15 the analysis of the registry data, we used the
- 16 Bayesian methods to simulate the survival
- 17 experience of hypothetical patients in a
- 18 hypothetical new trial utilizing ICD and
- 19 control groups in patient subgroups, and then
- 20 compared the predicted and empirical survival
- 21 data. And finally, a unique feature of our
- 22 analysis was the availability of patient level
- 23 data as this data was published and becomes
- 24 available, and it becomes available as
- 25 subsequent trials get published. So we

- 1 performed analyses that looked at two
- 2 additional points, what are the implications of
- 3 using aggregate data as opposed to patient
- 4 level data since that seems to provide the
- 5 efficacy, and by considering sequential
- 6 evidence in the trials, using the patient level
- 7 data, would we be able to reach a conclusion as
- 8 to overall ICD efficacy sooner. So there were
- 9 a lot of these analyses that are exploring
- 10 potential efficacy that Don Berry is going to
- 11 present next.
- 12 So this figure demonstrates the
- 13 results of combining data from all the trials
- 14 using either frequentist models which are the
- 15 diamonds labeled Weibull, or the Bayesian
- 16 models with the little squares labeled
- 17 Weibull-Bayes. The vertical extensions give a
- 18 look at the 95 percent confidence intervals,
- 19 and the box with different colors corresponds
- 20 to different modeling approaches used to
- 21 combine those trials. Within each block I put
- 22 without covariate adjustments and then the next
- 23 line we used covariate adjustment.
- 24 All the results showed evidence of
- 25 treatment effect on overall survival and as you

- 1 can see from the results, they are very similar
- 2 across all the models. And although we're not
- 3 showing the results here today, the estimates
- 4 from combining data in small trials has a lower
- 5 uncertainty as compared to those from
- 6 individual trials.
- 7 Now these initial models relied on
- 8 drawing assumptions as to how we accommodate
- 9 trial differences, and in one extreme end we
- 10 defined data assuming that the trial is
- 11 similar; next we relaxed the assumption and
- 12 assumed that the trial differences were
- 13 accommodated with either fixed or random
- 14 effects and allows that inference across
- 15 specific hazard function. However, we have
- 16 allowed the effect of the prognostic variables
- 17 and their interaction to be similar across all
- 18 trials.
- 19 So, we actually wanted to have a more
- 20 flexible model to fill out across specific
- 21 effects of prognostic variables, and for this
- 22 we used a Bayesian hierarchical model which you
- 23 heard about this morning from Dr. Lewis. And
- 24 that allows, because not all subgroups are
- 25 represented in all trials, for example ischemic

- 1 changes in heart failure Class IV patients, we
- 2 know that equivalent models cannot be estimated
- 3 using traditional frequentist methods.
- 4 So this figure demonstrates several
- 5 things. The different trials are shown going
- 6 up the Y axis with the overall data, combining
- 7 data here at the top in the black. The X axis
- 8 indicates the treatment effects, with a
- 9 vertical dashed line at zero meaning there was
- 10 no effect with standard treatment or ICD
- 11 therapy. Pretrial there is two lines showing
- 12 how different priors affect the findings.
- 13 Prior two is dashed, it's more informative in
- 14 predicting the uncertainty, so you know, the
- 15 interval is narrower.
- 16 Looking at this figure, you could
- 17 actually pose two important questions. Number
- 18 one, is there evidence that the devices used in
- 19 the different trials differed in terms of their
- 20 efficacies? And number two, controlling for
- 21 ejection fraction and ischemia in the NYHA
- 22 heart failure classes, are the patients within
- 23 the available trials similar?
- 24 Now notice that the results may be
- 25 confounded with the trial, but considering the

- 1 Bayesian hierarchical model that may affect
- 2 some of the differential effects across trials,
- 3 we see that the ICD efficacy varies across the
- 4 different trials.
- 5 Why does this, however, instill
- 6 uncertainty? This could be due to differences
- 7 in the devices, certainly in supplemental
- 8 trials we found other trials that had more
- 9 variability, but it also could be due to the
- 10 patient population being different with the
- 11 trial, even after controlling for the ejection
- 12 fraction, ischemia and heart failure class.
- 13 To show this in another format, we
- 14 show here the median hazard ratio at a 95
- 15 percent confidence interval for the effective
- 16 ICD treatment on the individual trials, and
- 17 then for the entire population of trials at the
- 18 bottom in black. We also provide the posterior
- 19 probability that the hazard ratios of mortality
- 20 reduction be .8 or less, and this was
- 21 considered by a panel to be a clinically
- 22 important reduction in mortality.
- 23 So for example, a lower than 95
- 24 percent confidence here for the overall hazard
- 25 ratio includes the value of no treatment, or

- 1 includes one, with an 82 percent probability
- 2 the hazard ratio is .8 or less, indicating a
- 3 clinically important reduction.
- 4 So we then wanted to explore whether
- 5 there was evidence of the ICD with respect to
- 6 the patients with different clinical
- 7 characteristics. You can see the differences
- 8 on this figure, and then we actually have a few
- 9 of them in a row. Again on the Y axis are the
- 10 different clinical trials with the combined
- 11 effect at the top. The two lines again
- 12 represent findings under two different priors,
- 13 with a red line reflecting a more informative
- 14 prior. The dot represents the median and this
- 15 is the line for a 95 percent confidence
- 16 interval. Things to the left of the dashed
- 17 line, or the vertical dashed line, indicates
- 18 that there is evidence of treatment effect, and
- 19 things on the right favor control therapy.
- 20 These analyses were performed using
- 21 the Bayesian hierarchical model to allow
- 22 further actions with differentials across
- 23 models. This slide looks at the efficacy of
- 24 the ICD in patients between the ages of 65 and
- 25 75. We next show the evidence of patients over

- 1 75. We looked at, again, patients with
- 2 ejection fraction greater than 30 percent. One
- 3 thing to note is that in most of the clinical
- 4 trials in their inclusion criteria, they had an
- 5 ejection fraction of 35 or 40 percent as an
- 6 upper bound.
- 7 We also explored the effectiveness of
- 8 ICD therapy across different heart failure
- 9 classes. This shows Class II, we have Class
- 10 III, and then finally with Class IV. Here we
- 11 actually see an example of how with a more
- 12 informative prior, we're much less likely to
- 13 see high absolute values for the hazard ratio.
- 14 And because of the lack of patients in Class IV
- 15 in the different trials, they are also a less
- 16 informative prior. So the upper bounds of the
- 17 intervals is valueless and they are probably
- 18 too large clinically to be believable. So in
- 19 order to find a more informative prior we
- 20 actually narrowed down these examples, so you
- 21 can see that still across these trials, there
- 22 is not enough information to actually cite to
- 23 the evidence of the ICD.
- 24 So this slide, again, shows a kind of
- 25 ratio in the clinical trials reviewed for the

- 1 Class IV patients, and note that not only is
- there no evidence of a significant interaction,
- 3 but now there's only a 49 percent probability
- 4 that the hazard ratio is .8 or less.
- 5 And finally, we evaluated the evidence
- 6 for ICD effectiveness in patients with ischemic
- 7 disease, and here for example you can see that
- 8 the DEFINITE trial, which as I indicated before
- 9 was all nonischemic patients, so I didn't
- 10 actually have any ischemic patients in their
- 11 trial, we're able to borrow from the other
- 12 trials to substitute and actually provide an
- 13 estimate, but obviously the credible interval
- 14 is increased as well.
- 15 So, another feature of a Bayesian
- 16 hierarchical model is that it allows for the
- 17 baseline survival functions to vary from trial
- 18 to trial, so this figure shows the estimated
- 19 posterior baseline survival functions under
- 20 each trial, and then overall trials in black.
- 21 So even controlling for ejection fraction,
- 22 ischemia, age and heart failure class, the
- 23 figures indicate that a patient's baseline
- 24 survival differs across the different trials.
- 25 So for example, patients in the

- 1 SCD-HEFT trial, shown in purple, seemed to have
- 2 the best survival prognosis, while patients in
- 3 the CABGPATCH and MUSTT have a poorer survival,
- 4 and we found several possible explanations for
- 5 this difference. The variation of the
- 6 cross-trial inferences, in the type of devices,
- 7 in the underlying medical care, in the patient
- 8 populations, or in patients whose
- 9 characteristics are currently not included in
- 10 our analysis, for example, gender, hazard
- 11 interval, time from MI, or a prior ventricular
- 12 event.
- 13 In this slide we wanted to see if
- 14 there were specific patient subgroups in which
- 15 the ICD was particularly ineffective or
- 16 effective. From my analysis, the evidence
- 17 showed there was no evidence for differential
- 18 treatment effect in the individual subgroups we
- 19 looked at. So here we actually showed that
- 20 there were five subgroups where the posterior
- 21 possibility that the hazard ratio for mortality
- 22 was less than .8 was greater than 75 percent,
- 23 so it will have an effect on what your decision
- 24 rule is going to be for determining
- 25 effectiveness.

- 1 Also note that we don't show here, but
- 2 we also looked at studies that included Class
- 3 IV patients, and the hazard ratio being less
- 4 than .8 was actually 50 percent or less.
- 5 So some of the key findings we
- 6 demonstrated through these analyses is that
- 7 first under all model formulations, both
- 8 frequentist and Bayesian, there seemed to be
- 9 evidence for the efficacy of overall survival.
- 10 Second, in this particular clinical domain and
- 11 intervention, evidence from Bayesian models are
- 12 generally similar to those obtained under those
- 13 frequentist models.
- 14 Evidence obtained through combining
- 15 data from all trials has lowered uncertainties
- 16 compared to those from individual trials. And
- 17 analyses of the combined data prove our
- 18 inferences by increasing the precision of our
- 19 estimates as well as the power to detect main
- 20 effects and interactions. Finally, the
- 21 Bayesian techniques allow us to examine
- 22 questions that may not be possible under
- 23 traditional frequentist methods. For example,
- 24 by borrowing data across trials, we're able to
- 25 examine differential effects between given

- 1 patient level subgroups even if an individual
- 2 trial does not include these subgroups.
- 3 We next wanted to explore the Bayesian
- 4 method looking at registry data. As I noted,
- 5 the current ICD registry doesn't have
- 6 longitudinal follow-up, so for those three
- 7 methods we actually used data from the MUSTT
- 8 registry, the one trial that had a registry
- 9 alongside the trial, and we noted that patients
- 10 in the MUSTT registry are actually both
- 11 different from those in the clinical trials, as
- 12 well as different characteristics from those in
- 13 the ICD.
- 14 So here we'll be showing some
- 15 prediction survival for patients and we're
- 16 looking at different subgroups. This is for
- 17 patients aged between 55 and 75, ejection
- 18 fraction less than 30, New York Heart
- 19 Association Class II, and with ischemic
- 20 disease. And we find here both in the
- 21 posterior predicted survival for the control
- 22 shown in blue, and then the ICD patient shown
- 23 in red, and then what we observed from these
- 24 same patients in the MUSTT registry in black.
- 25 And if you just focus on the control, you can

- 1 see how they're reflected in the MUSTT
- 2 registry.
- 3 So as you can see here, control
- 4 patients in the MUSTT registry actually have
- 5 better survival earlier on in the predictive
- 6 prior model, but are more comparable to the
- 7 predicted survival in later years. So although
- 8 the Bayesian model is based on the clinical
- 9 trial data, for a lot of the predicted survival
- 10 experience in each of the subgroups of interest
- 11 longitudinal data is so important because the
- 12 clinical trial patients are often different
- 13 from those in the registries. The MUSTT
- 14 registry actually illustrated this point, that
- 15 empirical survivor rate was quite different
- 16 from what we predicted from the model.
- 17 DR. C. GOODMAN: Dr. Sanders, you had
- 18 asked me for one warning.
- 19 DR. SANDERS: Okay, great.
- 20 As you attempt to borrow information
- 21 across trials, the Bayesian model allows you to
- 22 predict survival even if the individual trial
- 23 does not include some of the subgroups, and
- 24 again, this model cannot be estimated using
- 25 simply frequentist methods. We just show here

- 1 other subgroups with both the predicted
- 2 survival and that observed in the MUSTT
- 3 registry.
- 4 So finally, we turn to the analysis of
- 5 the aggregate versus patient level data, and
- 6 there is a lot of information in this
- 7 particular figure so again, I'm going to try to
- 8 orient you. On the X axis we looked at the
- 9 number of trials that we said were available to
- 10 combine and we assumed that the trials are
- 11 combined in the order of their publication
- 12 dates. We then provide estimates of the ICD
- 13 effectiveness under the separate modeling
- 14 assumptions. A frequentist takes the aggregate
- 15 effects shown in black, and then the dashed red
- 16 and blue lines refer to the Bayesian model with
- 17 fixed effects, and the solid lines are Bayesian
- 18 models with random effects, and the Bayesian
- 19 models we did it under two different priors to
- 20 allow that sensitivity offset as well.
- 21 And as you can see, with the
- 22 accumulated data from trials, there is a 95
- 23 percent credible, or under both priors the
- 24 posterior credibles get narrower, but the gain
- 25 of information from additional data is greater

- 1 than those less informative priors. And also
- these figures show how with two priors when
- 3 combining RCT data from the trials, we can only
- 4 find one line of overall ICD efficacy under one
- 5 prior, but we do not rule out no efficacy under
- 6 the alternative prior.
- 7 And this contrasts, this figure shows
- 8 the results of analysis when taking patient
- 9 level data sequentially. And as we combine
- 10 data from more trials, it actually becomes more
- 11 similar and precise. Using the more
- 12 informative prior, we were able to see the ICD
- 13 with efficacy sooner with six trials.
- 14 So something to note, while the
- 15 results from aggregate Bayesian analysis are
- 16 not necessarily consistent with those obtained
- 17 using patient level data, their accuracy could
- 18 be based on additional sources of variation,
- 19 for example those that explain patient
- 20 variation specifically in the study. And
- 21 second, combining the data from trials
- 22 sequentially, either through aggregate or
- 23 patient level data, may allow us to conclude
- 24 overall efficacy sooner. As already pointed
- 25 out, though, and we saw it earlier today, such

- 1 analyses must clarify the role of priors for
- 2 reaching such a conclusion.
- 3 So, some final comments about our
- 4 analyses. As we've shown, one of the main
- 5 advantages of Bayesian methods is that they
- 6 allow the borrowing of information across
- 7 trials and subgroups, and they enable us to
- 8 estimate effects within specific subgroups even
- 9 if those subgroups are not represented within a
- 10 given trial. Note, however, the finding is
- 11 dependent on the chosen prior, and also that
- 12 such analysis would not be feasible under a
- 13 frequentist approach if the data in any given
- 14 subgroup is not available. Also note that the
- 15 availability of patient level data such as we
- 16 had in our analysis allows us to directly
- 17 adjust for covariates within a population,
- 18 potentially explaining the differences in trial
- 19 outcomes.
- 20 So, here are some of the lessons that
- 21 we've learned through our analysis, and these
- 22 are supported by our case study that I talked
- 23 about today, but also through our literature
- 24 review and the simulation studies which were
- 25 performed as part of the work.

- 1 First, we only want to consider claims
- 2 about differential effect, subgroup effects if
- 3 they're accompanied by a formal statistical
- 4 test for interaction.
- 5 Second, consider all sources of data
- 6 in order to stipulate within the statistical
- 7 model which types of interaction are likely.
- 8 Third, base study design and
- 9 decision-making on those subgroup effects that
- 10 are likely to be strong.
- 11 Fourth, if the trial-based data are
- 12 sufficient, do not directly combine trial-based
- 13 data with information from other sources such
- 14 as observational data and/or expert opinion in
- 15 a setting when you're looking for validation.
- 16 When little or no trial-based
- 17 information about a subgroup is available,
- 18 really consider the use of other data in order
- 19 to specify a prior distribution, and you will
- 20 use this information to plan future studies.
- 21 And finally, claims based on Bayesian
- 22 methods should always include sensitivity
- 23 analyses to the assumed priors.
- 24 So just in summary, Bayesian
- 25 approaches provide a formal method of learning

- 1 from the evidence and accumulating, and we
- 2 believe that incorporating these findings in
- 3 the CMS decision-making processes will enable
- 4 the policy makers to harness really the power
- 5 of the available evidence, explore subgroup
- 6 effects within a trial or across trials in a
- 7 methodologically rigorous manner, assess the
- 8 uncertainty of clinical trial findings, and
- 9 ideally improve the health outcomes of the
- 10 Medicare beneficiaries.
- 11 I will now turn it over to Don to
- 12 present his findings and related analysis.
- 13 DR. BERRY: Thank you, Gillian.
- 14 DR. C. GOODMAN: Dr. Sanders, while
- 15 we're waiting, Dr. Satya-Murti has a question
- 16 for you, if you don't mind.
- 17 DR. SATYA-MURTI: Trying to double up
- 18 here. On the interaction, can you give us a
- 19 promised interaction and then if it fails, is
- 20 there a way to quantify interaction, an example
- 21 of what interaction you were dealing with in
- 22 the strongest or the most disturbing
- 23 interaction?
- 24 DR. C. GOODMAN: Can you please go to
- 25 the microphone, Dr. Sanders?

- 1 (Inaudible colloquy.)
- 2 DR. SATYA-MURTI: Yeah, give a
- 3 clinical example so I can relate it.
- 4 DR. SANDERS: Right. So I think, I'm
- 5 trying to remember a table, but the one where
- 6 we showed the ones where the subgroups were
- 7 greater than 75 percent probability, so I think
- 8 those were ones which were actually, I think
- 9 they were younger patients with low ejection
- 10 fractions.
- 11 DR. SATYA-MURTI: So what was the
- 12 interaction occurring?
- 13 DR. SANDERS: Oh, you mean what was
- 14 the actual endpoint?
- 15 DR. SATYA-MURTI: No. Was it because
- 16 they were younger and there was a third
- 17 independent variable that spoiled the results?
- 18 DR. SANDERS: I'm not sure.
- 19 DR. C. GOODMAN: I'll tell you what.
- 20 Why don't we hold off on answering that
- 21 question. Don, are you up?
- 22 DR. BERRY: Sorry about that, take it
- 23 off my time or my hide or something.
- 24 These are coauthors, or this is joint
- 25 with Bryan Luce, Jack Ishak and Craig Hunter of

- 1 United BioSource. We were actually funded by
- 2 Boston Scientific, who when they got the
- 3 request from Duke for the data, said gee,
- 4 what's going to happen and can you, you know,
- 5 BioSource, can you use the data that's
- 6 available to predict what the Duke study is
- 7 going to show? And so we did that as best we
- 8 could.
- 9 We used only published studies, so
- 10 even though Boston Scientific has their own
- 11 data, we didn't ask for that and in fact we
- 12 specifically said we didn't want it, we'll do a
- 13 purely literature-based analysis based on our
- 14 criteria for including studies, which was
- 15 randomization of ICD versus not, and all of the
- 16 information that we have is publicly available.
- 17 In getting our estimates of what the
- 18 survival was, we actually took out rulers and
- 19 put them down on the survival curves to
- 20 estimate what the values were of the various
- 21 things for the individual studies. So as Scott
- 22 indicates, Bayesian analysis is meta-analysis,
- 23 it's inherently synthetic as you've heard,
- 24 through all of the information that's
- 25 available, and you do modeling. It's

- 1 inherently, as Gillian said, the Bayesian fixed
- 2 effects, but recognizing the uncertainty
- 3 associated with the study effects and the
- 4 hazards associated with periods of time is a
- 5 natural thing for Bayesians.
- 6 As you see, we did a synthesis across
- 7 all of the studies, we estimated the individual
- 8 study effect. As Roger Lewis indicated today,
- 9 this shrinkage being a, or giving rise to
- 10 better estimates, and we saw some of that in
- 11 Gillian's presentation, the greater precision
- 12 associated with modeling that looks at results
- 13 over time, and we did predictions. So here we
- 14 are today at some point over the course of when
- 15 these trials were approved with some
- 16 information, should we do another study? And
- 17 if we did with particular characteristics,
- 18 what's it going to show?
- 19 So we imitated that process for each
- 20 study along the way and predicted its results
- 21 based on this hierarchical model. So we model
- 22 the sources of variation, we look at mortality
- 23 rates over time in terms of annual risks, we
- 24 explore the potential time intended effect of
- 25 ICD. So you'll see, it turns out that the

- 1 effect is not that dependent on time. But in
- 2 many cases, cancer, for example, cancer is
- 3 really a heterogeneous disease, the more
- 4 aggressive disease kills early, and the at risk
- 5 population is therefore a more indolent form of
- 6 disease and so the hazards tend to drop. So
- 7 you see high hazards early on, then it drops.
- 8 And in cardiovascular settings, for
- 9 example I mentioned the placement of catheter
- 10 in a-fib, and there's this huge recurrence of
- 11 a-fib in the first month, but then the at risk
- 12 population changes and it drops considerably,
- 13 so we wanted to model that process. You will
- 14 see that it didn't matter too much, but we
- 15 incorporated it in our models.
- 16 We've accumulated data and illustrated
- 17 the accrual of evidence with each study, and we
- 18 answered the question, when did the evidence
- 19 become conclusive, and how will we predict the
- 20 next study.
- 21 So, I will come back to which studies
- 22 we used. We did not know what studies Duke was
- 23 going to use, we used all of the available
- 24 randomized trials. The one that's not on here
- 25 is MUSTT, but there are some that Gillian did

- 1 not incorporate, presumably because she didn't
- 2 have the data.
- 3 And I have to say that I have done
- 4 meta-analysis where I have the data, for
- 5 example I have the data for all the randomized
- 6 trials of bone marrow transplant, both adjuvant
- 7 and metastatic, and it's enormously valuable to
- 8 be able to address such subgroups. So for
- 9 example, young patients or some of the
- 10 individual studies had shown that young
- 11 patients would benefit from bone marrow
- 12 transplant. If you want to know what the other
- 13 study showed, it's not verified. Some had
- 14 shown that HER2 negative patients might fail
- 15 but other studies showed that that wasn't the
- 16 case. So it's very important to have the
- 17 individual patient data, and we did not have
- 18 it.
- 19 Endpoint is mortality. Decomposed is
- 20 not a good word for Scott to use in that case.
- 21 (Laughter.)
- 22 We dissected the Kaplan-Meier curves,
- 23 did a Bayesian hierarchical model for the time
- 24 of death, and we did -- this is going to be
- 25 confusing to you because Gillian did several

- 1 models and we too did several models.
- 2 The first model -- and I'm not going
- 3 to go through the formulas that you've got
- 4 there. The first model is one that assumes
- 5 constant hazard over the five-year period
- 6 within each treatment and across the studies,
- 7 except that there is a study effect that's
- 8 incorporated as a covariate. It assumes the
- 9 same treatment effect in all of the studies but
- 10 it allows for the differential hazards over
- 11 time.
- 12 The model two allows for different
- 13 hazard ratios over time, so it's possible that
- 14 the effect of the device, the ICD is different
- 15 in the first year than in the second year, than
- 16 in the third year, et cetera, and so model two
- 17 allows for the possibility that the ICD effect
- 18 is different in the different time periods.
- 19 Model three allows for a different
- 20 effect of the treatment across the various
- 21 studies. So this, you see, is the study effect
- 22 and treatment effect, and this lambda stuff
- 23 merely represents the different hazards, and
- 24 you will see those in the pictures that I'm
- 25 showing you. These are the hierarchical study

- 1 effects; the one that's critical here for those
- 2 of you that are into this, is this thing that
- 3 Roger Lewis talked about, the hyperdistribution
- 4 of the study effects, the heterogeneity of it,
- 5 and the variance associated with that. That's,
- 6 the conclusions are in meta-analysis very
- 7 sensitive to that variable.
- 8 So model two, as I indicated, is
- 9 allowing for different treatment effects over
- 10 time and model three is this different study
- 11 effects.
- 12 So this is model one for all of the
- 13 studies, this is a relative risk of .77, so a
- 14 22 percent reduction in the risk of mortality
- 15 is contemplated. The probability that ICD is
- 16 effective in lowering that, there is a
- 17 probability that this hazard ratio is one, is
- 18 essentially one.
- 19 Model two, the time variable allowing
- 20 for -- I was going to come back to this, but
- 21 let me show you a picture. So this is the
- 22 picture of model one versus model two. So
- 23 focus on the solid lines here, so that's model
- 24 one control, this is model one ICD, is solid to
- 25 solid, forget about the dashes for just a

- 1 moment. That's in the first year, so there was
- 2 about a 17 percent mortality in the first year
- 3 in the control group and about a 13 percent in
- 4 the ICD group in the first year. Now these are
- 5 removed from the at risk population.
- 6 The second year hazard, the proportion
- 7 of those who went into the second year who
- 8 experienced an event in the control group, who
- 9 died, was about 14 percent versus 11 percent in
- 10 the device, in the ICD group in the second
- 11 year. And you see that the solid line seems
- 12 separated by about the same amount, and in the
- 13 large odds scale it is exactly the same amount.
- 14 That's model one. Model one says the benefit
- 15 of the device is the same for each one of these
- 16 periods. The underlying risk can differ over
- 17 time, but the benefits are the same.
- 18 Model two allows for, it's a
- 19 completely different and independent modeling
- 20 in this year than in this year and in this
- 21 year, et cetera. And so it happens if you see
- 22 something very similar in the first year for
- 23 comparing the control versus the ICD, it's a
- 24 little bit wider in the second year, you know,
- 25 it's, you know, it's very similar to model one

- 1 actually, except in the fourth year. In the
- 2 fourth year, you know, it's a tiny bit, a tad
- 3 better than the control group, and then back
- 4 to, you know, the same sort of thing in year
- 5 five.
- 6 So the previous slide -- oh, and this
- 7 is simply the survival version, this is cut at
- 8 like 50 percent of it.
- 9 So to go back, this then is the
- 10 estimated relative risk and it's, again, like
- 11 five different studies, combining the data from
- 12 all of the trials in the five different
- 13 studies. This is the relative risk in the
- 14 first year, in the second year, et cetera, and
- 15 that reflects the fact that there wasn't too
- 16 much difference in that fourth year.
- 17 This is merely to show the study
- 18 effect of model one, so we're modeling
- 19 heterogeneity in the results and this, MADIT-1
- 20 had something that we tagged as being one, so
- 21 this is a reference study, there is no
- 22 treatment in here, this is only what is the
- 23 population looking over time in these 30
- 24 studies, and what you can see is they tend to
- 25 get better over time, it's not unusual.

- 1 I keep fighting, I keep predicting
- 2 results in breast cancer, breast cancer's
- 3 getting incredibly better over time, and I'm
- 4 always undershooting. This suggests the same
- 5 thing.
- 6 DR. C. GOODMAN: Don, about four
- 7 minutes.
- 8 DR. BERRY: Four minutes, okay. So
- 9 this is a comparison allowing for the study to
- 10 be different and this is just MADIT-I by
- 11 itself, this is AVID by itself and what it
- 12 would be, allowing for the heterogeneity in the
- 13 populations, you see that the reds tend to be a
- 14 little better.
- 15 This is the same page that Roger was
- 16 showing you.
- 17 This is chronological risks in the
- 18 model one, so it starts out, MADIT-I is the
- 19 only thing that's known at that time, so this
- 20 red is equal to black. The red is the Bayesian
- 21 meta-analysis of the first three studies and
- 22 interestingly, the effect here is about here,
- 23 it's about here, you know, it's going down a
- 24 little bit with time, but it's pretty
- 25 predictive, so after three studies we knew more

- 1 or less what the answer was going to be, and
- 2 that is what that is intended to show.
- 3 This is predictive analysis, so here
- 4 we are with MADIT, let's predict AVID based on
- 5 either model one or model three, and so model
- 6 one predicts AVID to be like this thing, and
- 7 this is the actual AVID. It predicts CABG to
- 8 be this thing and this is the actual CABG.
- 9 Coming further along you see that MADIT-II had
- 10 this predicted value in model one, this
- 11 predicted value in model three, and that was
- 12 the answer. So the ability to do this
- 13 prediction shouldn't -- and of course the
- 14 widths of these things depend on the size of
- 15 the trial, and so it's useful for designing
- 16 trials, for instance.
- 17 This is the Duke studies that were
- 18 included, so they did not include CIDS or CASH
- 19 or any of these, and they included this but we
- 20 did not. And just to show you the comparison,
- 21 this is what you saw before for model one and
- 22 model two, so these numbers are exactly the
- 23 same as the previous slide. This is what you
- 24 get if you use the eight studies that were
- 25 included in the Duke analysis but using our

- 1 methodology, and the interesting thing is that
- 2 the overall benefit in the Duke studies is
- 3 greater, and that's partly because of MUSTT,
- 4 but it's also partly because COMPANION was not
- 5 included and COMPANION was not that positive,
- 6 and we did include it. It still is the case
- 7 that the probability of the benefit is one, and
- 8 in each one of these relative risks, that
- 9 advantages by ICD is improved.
- 10 So, high points, 22 percent reduction
- 11 of the risk. In fact it's persistent,
- 12 consistent, we saw it was known pretty early,
- 13 accounted for changes in patient population.
- 14 Only analyses of published data. We did no
- 15 individual covariate modeling.
- 16 So I will stop, thanks.
- 17 DR. C. GOODMAN: Thank you very much,
- 18 Don. Before we change our focused attention to
- 19 the center mic, does our panel, do any of our
- 20 panelists have a question on the presentations
- 21 we just heard from Drs. Sanders and Berry
- 22 before we proceed? Yes, Mark.
- 23 DR. HLATKY: I was intrigued by the
- 24 fact that you did a completely independent
- 25 analysis knowing that somebody was going to do

- 1 an analysis, and I wonder if you would draw any
- 2 conclusion about, in doing these models,
- 3 whether it's a good idea to have independent
- 4 replication from a separate team, given all the
- 5 stuff that goes into modeling. Is that an
- 6 important thing in public decisions like these?
- 7 DR. BERRY: I think it's a great idea.
- 8 I talked earlier on about CISNET where we had
- 9 seven modelers, they were using the same data
- 10 but with different modelers, so we got to
- 11 assess with the seven modelers, what is the
- 12 variable in the modeling process, and it's
- 13 substantial, there were differences in the
- 14 various conclusions as to the relative benefits
- 15 of screening and adjuvant therapy.
- 16 Here there's a different dimension
- 17 because Gillian had more data than I did, we
- 18 used different studies, so it's apples and
- 19 oranges in a way. But I think it's an
- 20 absolutely important thing to assess the
- 21 modeling ability and, you know, models, all
- 22 models are wrong, and to assess, you know, the
- 23 heterogeneity in that process by including at
- 24 least a couple of models.
- 25 DR. SANDERS: I certainly agree. I

- 1 think that one of the ways to validate a model
- 2 is a situation like this where you can actually
- 3 look at the assumptions you made, you know, Don
- 4 was able to look at which of the trials we used
- 5 and then see whether those particular models
- 6 were going to yield similar results. And, you
- 7 know, the finish to that thing that I said,
- 8 that all models are wrong, but some are useful,
- 9 so I think it's certainly a good exercise here.
- 10 DR. C. GOODMAN: Dr. Prager.
- 11 DR. PRAGER: Gillian, I was intrigued
- 12 by the way you broke these things down and I
- 13 assume that none of the studies that were done
- 14 utilized any of your methodology when they went
- 15 for approval of their device; is that right?
- 16 DR. SANDERS: No, they were all done
- 17 using frequentist methods.
- 18 DR. PRAGER: Because if we looked
- 19 closely at the CABG study the way you
- 20 stratified it, it has negligible treatment
- 21 effect in everything except patients with
- 22 ejection fraction of greater than 30 percent
- 23 and --
- 24 DR. SANDERS: Well, CABG actually is,
- 25 the CABG trial was not a very positive trial.

- 1 I mean, the individual trials of CABG, DINAMIT,
- 2 I'm trying to think of which two, is it CASH,
- 3 they all varied in terms of their individual
- 4 trials in terms of effectiveness. But I think
- 5 what the difference is is that in our analysis
- 6 we're able to borrow information from all the
- 7 other trials. And so with the CABG, although
- 8 it gives you the estimate for the individual
- 9 trial, there's actually more information on
- 10 those types of patients from all the other
- 11 trials, so it is not going to give you the same
- 12 result as when you look at the CABG data from
- 13 their publication.
- 14 DR. PRAGER: Okay. But nevertheless,
- 15 now when you look at it this way it looks like
- 16 there's very little efficacy there, and I mean
- 17 to me, if I were a decision-maker making a
- 18 decision on whether to approve this specific
- 19 device, whatever was in this study, I would
- 20 have to say it has negligible effect in
- 21 everybody except those with an ejection
- 22 fraction greater than 30 percent. And just,
- 23 how can you see this feeding into the process?
- 24 DR. SANDERS: Right. I think this
- 25 adds to verifying what your decision rule is

- 1 and how you're actually going to use this
- 2 Bayesian information. So that's where I tried
- 3 to present that information about where the
- 4 hazards ratio is going to be less than .8, so
- 5 that would be seen, at least by the
- 6 cardiologists on our project, as being a
- 7 clinically significant reduction. So there
- 8 were certainly subgroups where that happened.
- 9 But for the individual subgroups there wasn't a
- 10 subgroup that we could point to saying, you
- 11 know, for that to be for this one group, and
- 12 that's where you're getting this really great
- 13 background.
- 14 DR. C. GOODMAN: Dr. Maisel.
- 15 DR. MAISEL: First of all, Gillian, as
- 16 the others have mentioned, I found your
- 17 presentation extremely interesting. I think
- 18 that looking at the slides you had maybe about
- 19 four or five from the end, those nice graphs
- 20 where you did the different models and the
- 21 frequentist and the Bayesian analysis, I'm
- 22 struck by a couple of things.
- 23 The most striking theme to me is that
- 24 it really matters what model and what prior
- 25 probability you choose to use for your model,

- 1 so the graded variability on that graph is
- 2 between the various Bayesian models that you
- 3 did, and so how do we know which model is the
- 4 right model? And I know there's no answer to
- 5 that, but my point simply is, it doesn't seem
- 6 any different on some level from, you know, you
- 7 can play statistical games and create a model
- 8 that looks good or you can create a model that
- 9 looks bad, so how do we know which one to
- 10 believe?
- 11 DR. SANDERS: I think, actually, Don
- 12 would be better to answer that.
- 13 DR. BERRY: So the good news with
- 14 respect to that is, as you heard from Roger and
- 15 Steve this morning, also Gillian, it's
- 16 transparent. I mean, you know if you assume
- 17 this, then you get that. And then you can go
- 18 back and say do I want to assume this, is that,
- 19 my prior, is that a reasonable prior for
- 20 policy-making, and to compare the various
- 21 priors. If it turns out that the answers still
- 22 vary over the range of what you think are the
- 23 reasonable trials, then you're not ready to
- 24 make the decision. I mean, very qualitatively,
- 25 you're not going to make a decision, and you

- 1 may say we've got to fund a study to go out and
- 2 address this question because we don't yet know
- 3 the answer.
- 4 DR. C. GOODMAN: Thank you. Let us
- 5 revisit, briefly, Dr. Satya-Murti's question.
- 6 DR. SANDERS: Right. So the things
- 7 that we were actually exposed to, in our
- 8 overall we were seeing about .65 hazard ratios.
- 9 In those particular subgroups where it looked
- 10 like there was at least some higher
- 11 probabilities of the benefit, it ranged from
- 12 about maybe .52 to .58, and in the groups with
- 13 the Class IV patients it's about .8 up to .99.
- 14 So, you know, it's not, it's not huge
- 15 differences in the hazard ratios but there
- 16 certainly are differences.
- 17 DR. SATYA-MURTI: Yeah, that helps.
- 18 You have cautioned us to look for interaction,
- 19 so as I understand interaction, it's a surprise
- 20 third variable; is that a fair way of labeling
- 21 that?
- 22 DR. BERRY: I think so. Interactions,
- 23 there's a close relationship between subset
- 24 analysis and interactions. So subset analysis
- 25 you may ask, in this subset of patients, you

- 1 know, the less than 30 percent, is there a
- 2 different treatment effect than in the greater
- 3 than 30 percent complementary subset? And a
- 4 statistician usually tests that by way of
- 5 interaction, in cancer we call it predictive
- 6 markers. And it's very difficult -- I don't
- 7 know the answer to this particular question,
- 8 but it's very difficult to show interactions,
- 9 and so statisticians become, as kind of a
- 10 breed, very conservative with respect to this
- 11 question.
- 12 The usual basis is that there is no
- 13 interaction and to show it is very difficult,
- 14 so it takes a lot of evidence to show an
- 15 interaction and roughly speaking, you want to
- 16 look for an extremely large or small posterior
- 17 probability or extremely low P value, something
- 18 that would be, in your word surprising, or
- 19 there'd better be a biology associated with it.
- 20 Now, recognize that the human mind is
- 21 wonderfully capable of making up biological
- 22 explanations for any observation.
- 23 The third possibility is that you have
- 24 to go through a confirmation study.
- 25 DR. SATYA-MURTI: The reason I was

- 1 asking what that interaction, the third
- 2 variable is, I'm just hoping, could we put to
- 3 use, would that have a basis for further
- 4 studies from here on, we need to watch out for
- 5 that?
- 6 DR. SANDERS: It certainly might
- 7 affect the design and what kind of patient
- 8 population you might want to do the next study
- 9 on. I mean, if this is, the coverage decision
- 10 for ICD therapy is focusing really on patients
- 11 in different New York Heart Association
- 12 classes, various time from MI, which were
- 13 identified kind of a priori from the existing
- 14 clinical trials with subgroups where there
- 15 wasn't as much evidence, and this is certainly
- 16 supportive of the need for more efforts in this
- 17 group.
- 18 DR. SATYA-MURTI: Thank you.
- 19 DR. GOODMAN: Okay. We're going to
- 20 change --
- 21 DR. BERRY: Can I just add one more
- 22 anecdote, because some people laughed when I
- 23 said something this morning about subsets.
- 24 DR. C. GOODMAN: Yes, Dr. Berry.
- 25 DR. BERRY: So, ER positive/HER2

- 1 negative breast cancer, that's more than 50
- 2 percent of the breast cancer. If you do a
- 3 subset analysis breaking it into various
- 4 pieces, you find that Taxol, any taxane does
- 5 not benefit that group. We've seen it in
- 6 thousands and thousands of patients. If you
- 7 ask now somebody from Peoria how they treat
- 8 those patients, they give them Taxol.
- 9 DR. C. GOODMAN: Thank you. We're now
- 10 going to change our focus to scheduled public
- 11 comments and so we will pause now while we turn
- 12 toward the center mic. And our first and
- 13 perhaps last scheduled public commenter is
- 14 Dr. Bryan Luce. Dr. Luce is going to give his
- 15 public comment, and I am reminded to say that
- 16 speakers are asked to state whether or not they
- 17 have financial involvement with manufacturers
- 18 or other interests.
- 19 DR. LUCE: Thank you. Yes, my name is
- 20 Bryan Luce. I have some financial involvement
- 21 in the sense that I was a co-author of the
- 22 paper you saw through Don Berry. I'm very
- 23 involved with Bayesian methods development and
- 24 have both industry and some public sponsorship
- 25 to develop those methods.

- 1 So let me begin my remarks by first
- 2 thanking CMS and the committee for this
- 3 opportunity to comment. More importantly, I
- 4 wish to note that I'm impressed with CMS's
- 5 interest in exploring novel analytical methods
- 6 in a quest to improve efficiency and
- 7 effectiveness in coverage decision-making, and
- 8 I am particularly pleased that CMS is exploring
- 9 Bayesian methods for its coverage decision
- 10 process.
- 11 For purposes of disclosure, I do wish
- 12 to note my long and firmly held belief that all
- 13 decision processes including Medicare coverage
- 14 decisions as well as the decision process
- 15 itself are conceptually Bayesian processes,
- 16 whether formalized or not. I also wish to
- 17 disclose that I have founded the Bayesian
- 18 Initiative for Health Economics and Outcomes
- 19 Research, and more recently have founded and
- 20 direct the PACE Initiative, which stands for
- 21 pragmatic approaches to comparative
- 22 effectiveness, and initially it's focusing
- 23 specifically on the application of Bayesian
- 24 methods in looking at comparative trials.
- 25 My statement today changes a little

- 1 bit, not too much, but it specifically
- 2 addresses the issue relative to conditional
- 3 coverage expressed specifically by CMS's
- 4 coverage and evidence development.
- 5 As I was listening this morning, I
- 6 would argue that the concepts of adaptive and
- 7 predictive probabilities scream coverage
- 8 (inaudible). As I see it, the CED process is
- 9 conceptually and almost literally a Bayesian
- 10 process. It is a learning and updating
- 11 evidence for the decision-making process. For
- 12 instance, typically if not always, CMS has
- 13 chosen to consider a new clinical procedure or
- 14 technology for a national coverage decision.
- 15 It reviews the evidence often formally, for
- 16 instance by our systematic review of
- 17 literature, other existing reports, even expert
- 18 opinion, and often a technology assessment from
- 19 AHRQ. From the Bayesian perspective, CMS would
- 20 now have an informative prior.
- 21 After full review and consideration,
- 22 should existing evidence be judged by CMS as
- 23 promising but not sufficient, for example there
- 24 may be inadequate evidence with respect to
- 25 Medicare beneficiaries, which is something I

- 1 think we see commonly here, additional evidence
- 2 is requested before an NCD would be
- 3 reconsidered.
- 4 As I understand it, the recent CED
- 5 recommendation of pharmacogenomic-based
- 6 warfarin followed this process, and so from a
- 7 Bayesian perspective CMS now wishes to update
- 8 its prior, or the existing evidence base. So
- 9 this is a classic Bayesian problem or scenario;
- 10 it absolutely is best treated analytically with
- 11 Bayesian methods. In point of fact, I can't
- 12 imagine the rationale of initiating a new trial
- 13 de novo.
- 14 The CED-inspired Bayesian clinical
- 15 trial should be designed in the following ways
- 16 as far as I can see: First, a cap should be
- 17 conceived in terms of marginality, which is
- 18 adding evidence to the existing evidence base
- 19 until it no longer, and I think this was talked
- 20 about, and an informed decision can be made.
- 21 Second, optimally and to the extent
- 22 technically feasible, the trial should allow
- 23 the realtime evidence review and subsequent
- 24 adapting to what is learned as the evidence
- 25 accumulates, of course following their decision

- 1 rules and termed a priori. An adaptive
- 2 learning process literally rerandomizes
- 3 treatment groups in search of optimizing
- 4 therapy, which should assist CMS target
- 5 coverage in an appropriate setting, patient
- 6 population, providing characteristics and so
- 7 forth.
- 8 Third, the trials should continue
- 9 until CMS is just, and I would argue no more
- 10 satisfied, that it can make an informed
- 11 decision. By making the full use of existing
- 12 evidence, employing realtime learning, adapting
- 13 in order to optimize evidence development, and
- 14 terminating as soon as CMS is satisfied, the
- 15 CED process itself should be optimally
- 16 efficient.
- 17 Finally, I note that this research
- 18 process that I'm talking about or that we have
- 19 been talking about, I think is highly
- 20 consistent with a learning health care system
- 21 concept that is being promoted by many, but
- 22 certainly by those interested in a roundtable
- 23 and evidence-based medicine.
- 24 Also, I would like to offer this point
- 25 in respect to the questions you're going to be

- 1 asked to answer. I think you need more
- 2 questions, one of which is, and I would love to
- 3 have gotten it in, except you would probably
- 4 need OMB clearance. But the question I would
- 5 put on the table that I would like to have you
- 6 consider is to what extent do you think that
- 7 Bayesian adaptive methods are applicable
- 8 specifically to the CED-inspired trials?
- 9 So I think that is everything, and I
- 10 am very pleased to have this opportunity.
- 11 DR. C. GOODMAN: Thank you very much,
- 12 Bryan Luce.
- 13 We did provide an opportunity for open
- 14 public comments and I don't think anyone else
- 15 has signed up. Thank you, Ms. Ellis.
- 16 So we can proceed to the next section,
- 17 which is our questions to presenters. And
- 18 again, let's pause for 30 seconds while all of
- 19 our presenters from this morning would
- 20 congregate basically in the front and center,
- 21 the front row and close to the center aisle, if
- 22 you would please.
- 23 We were only scheduled to have a
- 24 30-minute time slot here for questions to
- 25 presenters and we may use more or less than

- 1 that, and we would encourage the panel to do a
- 2 couple of things. One is questions that will
- 3 help us answer our remaining questions will be
- 4 most welcome, because these are not trivial
- 5 questions and we hope we can use our
- 6 presenters' time and expertise toward that
- 7 purpose. And second, concise questions are
- 8 desirable, as are answers. So, I know that we
- 9 sometimes have a tendency to throw in a lot of
- 10 extra examples and other ideas, but we are
- 11 looking for not just sensitivity but
- 12 specificity here in our discussions.
- 13 With that said, Dr. Mock is first with
- 14 a question, and when you throw out a question,
- 15 if you have a particular speaker to whom you
- 16 would like it to be addressed, please say so.
- 17 DR. MOCK: Thanks, Cliff. I want to
- 18 address this to Dr. Normand, Dr. Berry, as well
- 19 as Dr. Sanders, and the question is
- 20 straightforward, coming from a nonstatistician.
- 21 What is the decision point and what is the
- 22 baseline rule on inclusion versus exclusion of
- 23 studies when you roll them together, be it a
- 24 meta-analysis or a Bayesian calculation?
- 25 DR. SANDERS: I know this was directed

- 1 to Dr. Normand in general, but I just wanted to
- 2 clear up a little bit about why we included
- 3 some trials and did not with other trials.
- 4 The COMPANION trial is a trial
- 5 actually of ICD-CRC devices versus plain CRC
- 6 versus optimal medical care, so we actually
- 7 thought it was a different trial with a very
- 8 different device so that we didn't think it
- 9 made sense to include it in the group.
- 10 The AMBIEN CAT trials are pretty small
- 11 trials which, one of them looks at people with
- 12 perhaps not transient heart failure, and so it
- 13 was again seen as kind of a different question.
- 14 But those two, certainly we could have included
- 15 those and I think that the differences would
- 16 have come out in the analyses, but I didn't
- 17 actually feel that they were recognized as kind
- 18 of the major RCT trials for us to go out for
- 19 the patient level data.
- 20 The CIDS and the DINAMIT trial, it
- 21 certainly would have been great for us to
- 22 include those, and we actually have an RO-1
- 23 being reviewed, I think today, and that
- 24 includes the DINAMIT trial, and that was purely
- 25 a case of us not getting access to the patient

- 1 level data on time. And as Don showed, the
- 2 DINAMIT trial was a trial that showed a
- 3 negative, it didn't show a treatment effect, so
- 4 certainly it would have increased our hazard
- 5 ratio had we included those patients. So,
- 6 those are just the specific trials and in
- 7 general why we did them.
- 8 DR. NORMAND: I will try to be brief.
- 9 I think the first cut is clinical, it's not
- 10 statistical, so the clinicians need to look at
- 11 the various trials and studies and determine
- 12 whether or not it's a similar enough treatment
- 13 to include. So, you can think of like all
- 14 stents or certain stents, I'm going to throw
- 15 them into one study. You can think of a drug
- 16 where the dose is similar enough that I'm going
- 17 to include it. So at the first cut, it really
- 18 is a clinical decision that determines which
- 19 studies are included.
- 20 Now short of that, then some
- 21 statistical considerations would really relate
- 22 to some extent the quality of the data, so I'll
- 23 give you an extreme example that doesn't happen
- 24 that much, but pretend there was completely
- 25 missing, everybody was missing data, those

- 1 types of things we would consider, but short of
- 2 that it's mostly a clinical decision that would
- 3 dictate what types of studies are included, and
- 4 the statistician would then model those
- 5 studies, assuming the data are measured
- 6 similarly.
- 7 DR. BERRY: So, you heard me say
- 8 earlier this morning that you use all of the
- 9 information. It's a huge task and in this
- 10 setting, you've got, or presumably you have to
- 11 set something like what is the question you're
- 12 addressing and does it include studies that
- 13 address the same question. But there are low
- 14 quality studies, there are high quality
- 15 studies, you could include them all with a
- 16 discounting for their quality.
- 17 The actual analysis, and this is one
- 18 of the things that Roger Lewis indicated, the
- 19 actual analysis is helpful in this regard
- 20 because if you've got a study that's out to
- 21 lunch, you know, it's bloated or they made up
- 22 the study, and you do the hierarchical model,
- 23 you will pinpoint that this thing is off the
- 24 scale and that the focus isn't here, and they
- 25 would borrow very little strength from that

- 1 extreme.
- 2 That said, it's awfully difficult to
- 3 do the quality assessment, so usually we do
- 4 what the usual meta-analysis folks do, we set
- 5 bounds, only randomized controlled trials, and
- 6 go from there.
- 7 DR. GOODMAN: Thank you, Dr. Perry.
- 8 Dr. Goodman, Dr. Steve Goodman.
- 9 DR. S. GOODMAN: You didn't address it
- 10 to me but I just wanted to add, I was involved
- 11 a little bit in the MedCAC decision on MADIT-II
- 12 and just to add a blog to the question that
- 13 we're asking, in real time it's sometimes much
- 14 more difficult to make these judgments than
- 15 looking ex post facto, and in MADIT-II a
- 16 critical issue was the expansion of the
- 17 eligibility criteria to subjects who had not
- 18 demonstrated inducible arrhythmia. So there
- 19 was a large group there who did not have it
- 20 through physiologic testing, and it was a
- 21 biologic question as to whether these were
- 22 biologically the same as those who had
- 23 demonstrated inducibility, and at that time the
- 24 study did not have enough inducibility testing
- 25 in the control to assess that question.

- 1 And there was a lot of questions that
- 2 CMS was, and I think this was one of the
- 3 reasons I was involved, was addressing, is was
- 4 this combinable with the others. So somewhat
- 5 done was a projection of what would have
- 6 happened. That projection works if you don't
- 7 include, if that inducibility factor in fact
- 8 didn't make a difference. And we've learned a
- 9 lot about inducibility and the predictability
- 10 of the efficacy effects since then, and I
- 11 gather, and Dr. Maisel could probably correct
- me, that it doesn't have anywhere close to the,
- 13 if any, effect that it was thought to have at
- 14 the time.
- 15 So I think the issue in real time of
- 16 whether a given study, which is always defined
- 17 to be somewhat different than previous studies,
- 18 can be combined or predicted can be quite
- 19 difficult, and it's very difficult to try to,
- 20 as Dr. Normand said, it's fundamentally a
- 21 biological and a clinical judgment, and
- 22 estimates we learn more with that study and in
- 23 some studies that allow us to see more clearly
- 24 in retrospect, than what we could have seen at
- 25 the time, because these are fundamental

- 1 biological questions that are simultaneously
- 2 being answered by those trials, and we may or
- 3 may not have them settled by that time.
- 4 DR. C. GOODMAN: Thank you, Steve.
- 5 Dr. Hlatky is next.
- 6 DR. HLATKY: I'm trying to wrestle
- 7 with the issue that might be, how do we use
- 8 observational data and combine it with the
- 9 trial data, and maybe an example would be
- 10 helpfully concrete. I guess we may have this
- 11 position often where trials are done in very
- 12 specialized selected populations, and the
- 13 question is whether they will work as well in
- 14 less selective populations, and we might say
- 15 let's start a registry and coverage for
- 16 evidence development. I'm trying to see how
- 17 the Bayesian process would work in that,
- 18 especially saying, oh, by the way, you know, it
- 19 doesn't work based on observations in these
- 20 groups. Now that we have more of them or, you
- 21 know, whether we had trials, we only had more
- 22 people where it looked like it would work, and
- 23 out in the real world people are willing to
- 24 stretch that further.
- 25 So it's not to any specific speaker,

- 1 but I'm wondering how we would use these
- 2 methods to help us in this situation where we
- 3 do coverage for evidence development.
- 4 DR. NORMAND: Well, I guess the way I
- 5 would look at it is as follows: It's
- 6 essentially a question of causal difference,
- 7 Dr. Hlatky. We've got observational data,
- 8 we've got selection issues, and so the question
- 9 would be how can we use observational data in
- 10 order to form how effective a particular
- 11 treatment is. And so if we have multiple
- 12 sources of data, so if we have some diverse
- 13 populations where we think there's treatment
- 14 heterogeneity, then using or adopting a
- 15 Bayesian approach that tries to participate or
- 16 separate those components of variance, it seems
- 17 the most sensible way to proceed.
- 18 So it seems to me that there are two
- 19 types of questions you have asked when I think
- 20 about it, one is sort of the causal mechanism,
- 21 the lack of randomization in an observational
- 22 world combined with the focus in the real
- 23 world, and then on top of that how the Bayesian
- 24 methods could be used. And so the answer is
- 25 that for a usual causal question, Bayesian or

- 1 non-Bayesian, but I would submit that even in
- 2 answering the causal question you could use it,
- 3 because you will have a lot of heterogeneity
- 4 and that using a Bayesian method would exploit
- 5 that in a good way.
- 6 DR. C. GOODMAN: Thank you.
- 7 Dr. Lewis, do you have an answer to this
- 8 question?
- 9 DR. LEWIS: Just to be very specific,
- 10 the observational data may be comparative or
- 11 noncomparative, and I think using the
- 12 hierarchical modeling approach you can handle
- 13 both of these, but the way the second level of
- 14 the model is structured depends on what's
- 15 available to you. So hypothetically if the
- 16 observational data are comparative, using
- 17 patients both with and without the treatment of
- 18 interest, then the heterogeneity would be in
- 19 the magnitude of the treatment effect, because
- 20 you don't believe the patients in the
- 21 observational study are fundamentally
- 22 exchangeable or the same as the patients in the
- 23 original RCT. So in the second level of the
- 24 model, those treatment effects you wouldn't
- 25 expect to fall right on top of each other.

- 1 In an alternative case, which may be
- 2 more common, the observational data are
- 3 noncomparative, and in that setting the
- 4 information from the observational data may
- 5 give you information just on the rate of
- 6 outcome in the control arm, or the comparative
- 7 arm, or in the arm that includes the new device
- 8 or drug, and then the second model looks
- 9 different, but conceptually it's very similar.
- 10 DR. C. GOODMAN: Thank you. Dr. Grant
- 11 is next.
- 12 DR. GRANT: A general comment,
- 13 question to anyone. It seems to me that in
- 14 general there are, from the simplest respect in
- 15 design, there are three levels. One is, the
- 16 individuals design the trial CED, all those
- 17 kinds of things which you represent, some of
- 18 you. The second level are those of us who
- 19 spend quite a bit of our time, if not most of
- 20 it, evaluating evidence from those kinds of
- 21 trials. And then the third level are the
- 22 decision-makers who ultimately decide to adopt,
- 23 reject or to gather new evidence. You've also
- 24 spent a fair amount of time telling us the
- 25 perils and all the ills of P values and we

- 1 haven't been involved there, and so how is it
- 2 going to be different?
- 3 How is it going to be different now at
- 4 all those levels? I mean, I can sort of see it
- 5 in some respects generally, but how is
- 6 everybody going to attain the skills necessary
- 7 to be able to utilize a different way of
- 8 thinking than they're used to, which they've
- 9 already misused?
- 10 DR. C. GOODMAN: Dr. Berry.
- 11 DR. BERRY: So, I thought you were
- 12 going to say as designers as opposed to
- 13 decision-makers as to how the process would go,
- 14 just a word about that, and why it is
- 15 different. It's the transparency, it's the
- 16 formal aspect, it's the decision analysis of
- 17 why we do this, do we calculate the utilities,
- 18 build this trial, make a decision, or ask for
- 19 more data. The question of how you're going to
- 20 actually do it, it's like in adaptive designs.
- 21 I face a world out there of, speaking as kindly
- 22 as I can, ignorance about this whole process,
- 23 higher fees, state monitoring committees, and
- 24 you can't do it overnight, you can't suddenly
- 25 say we're going to change and everything is

- 1 going to be this way.
- 2 You have to get into it slowly, have
- 3 some pilot projects, the Duke project being
- 4 one, but then build up and incorporate the
- 5 decision aspect and the things more formally.
- I mean, I loved what Brian had to say, but you
- 7 can't do that right away. It's going to take
- 8 time, it's going to take effort, it's going to
- 9 take, you know, two modeling groups to see how
- 10 it's going. You might even have a parallel
- 11 process. If you don't trust it at all, you can
- 12 do the usual uninformed stuff and have a
- 13 parallel process where some Bayesian group
- 14 educating you over time is doing this and
- 15 saying boy, you shouldn't do that, but you do
- 16 it anyway, and then you pay the price. It's a
- 17 tough question.
- 18 DR. C. GOODMAN: Dr. Satya-Murti and
- 19 then Dr. Prager. Sati?
- 20 DR. SATYA-MURTI: These are important
- 21 questions for CMS. What it is in the current
- 22 level of reimbursement and coverage, which is
- 23 also something I come from, a Bayesian decision
- 24 to cover or not cover may have been made on the
- 25 basis of expert recommendations from you all,

- 1 but sometime later, as Bayesian inherently
- 2 does, you might decide, and we may not have a
- 3 coverage decision actually, we have denied
- 4 coverage. Or there's some evidence denying
- 5 that. If we deny and you come back and we
- 6 cover, everybody's happy. But the converse,
- 7 you cover it for some time and then you decide
- 8 oh, no, this is quite harmful, this has got
- 9 fairly grave consequences in the media and
- 10 industry.
- 11 And so that is where we're wondering
- 12 if we could help CMS by building, putting in
- 13 language where, just like most decisions would
- 14 be conditional, pro tem, but we may reverse it
- 15 and then say well, you haven't quite convinced
- 16 us, like with a curfew, you have violated it,
- 17 so you can't do it.
- 18 DR. C. GOODMAN: Dr. Normand.
- 19 DR. NORMAND: I had to get up on this
- 20 one. This is how we assess evidence with the
- 21 Bayesian approach, it has nothing to do with
- 22 the philosophy.
- 23 DR. SATYA-MURTI: I agree.
- 24 DR. NORMAND: And I think one would
- 25 argue, therefore, that my role is a policy

- 1 world, policy-making, I'm in the department of
- 2 healthcare policy and we make these types of
- 3 decisions, and a lot of them are informed at
- 4 your level. And so the real issue is wanting
- 5 to see these issues based on the best evidence,
- 6 and so I would lead that into what we do with
- 7 the evidence. And some of the things that we
- 8 talked about today, I think are better ways to
- 9 quantify evidence, such as Bayes factors. So I
- 10 think if it's going to happen anyhow, it's best
- 11 therefore to try and adopt, this is a paradigm
- 12 shift, is try to adopt a type of evidence
- 13 building that is one that is actually going to
- 14 provide the answer to the questions you seek,
- 15 as opposed to having these other types of
- 16 pieces of P values and whatnot, so I just
- 17 wanted to say that.
- 18 DR. SATYA-MURTI: Actually, you're
- 19 correct. I grant you, the language says
- 20 something is reasonable and necessary, and it
- 21 becomes all and none, it is not so anymore for
- 22 where we are going now, all decisions to take
- 23 one or other positive or negative action is
- 24 likely to evolve into something that may become
- 25 conditional. So if as a panel we agree on

- 1 that, we could, we're in a position to
- 2 recommend that more such decisions would be, I
- 3 don't want to use the word conditional, but
- 4 would be appropriate at that time subject to
- 5 later thinking.
- 6 DR. C. GOODMAN: Dr. Lewis.
- 7 DR. LEWIS: The right thing is not
- 8 always the easiest, and one of the advantages
- 9 of the Bayesian approach is that it is
- 10 inherently sequential in the sense that new
- 11 information allows you to update yesterday's
- 12 posterior and consider it as today's prior, to
- 13 be further updated to a current posterior. So
- 14 one of the opportunities for CMS in my opinion
- 15 is that at the time that a Bayesian methodology
- 16 or philosophy or approach is considered, one
- 17 can take the advantage of that to explicitly
- 18 state the intent to adopt a continual
- 19 reassessment approach in which it is not the
- 20 responsibility of CMS just to make a coverage
- 21 decision initially, but to continually ensure
- 22 that coverage decision remains the best
- 23 decision to insure optimal outcomes and best
- 24 use of the resources.
- 25 DR. C. GOODMAN: Thank you, Dr. Lewis.

- 1 Dr. Prager is next.
- 2 DR. PRAGER: Most of all we have been
- 3 talking about today related to devices rather
- 4 than medications, and I think that may be
- 5 relevant because part D is a different animal
- 6 than the rest of coverage, although I think as
- 7 we move forward that may actually change.
- 8 As clinicians we're often faced with
- 9 the dilemma regarding off label use and I'll
- 10 give you two for instances. One is drugs that
- 11 are used for pain often are covered based on
- 12 the etiology -- it may appear that the FDA
- 13 requires you to study them for what caused the
- 14 pain rather than what is the pain. So for
- 15 instance, a posthepatic neuralgia is covered
- 16 with three different drugs right now. That
- 17 exact same pain, if it's caused by something
- 18 else, is not covered at all, and as clinicians
- 19 that's a problem.
- 20 One other example going to the device
- 21 world is that neuropathic pain is covered with
- 22 spinal cord stimulation, and yet in Europe the
- 23 number one use of spinal cord stimulation is to
- 24 treat the pain from the heart that is in
- 25 angina, and yet in this country it's not

- 1 covered there. There is a multitude of studies
- 2 indicating in Europe, demonstrating efficacy of
- 3 spinal cord stimulation for angina.
- 4 So what my question is, given the
- 5 methodology that has been presented today, how
- 6 would the group or any one of you see it
- 7 applying to this off label use dilemma that
- 8 many of the clinicians face?
- 9 DR. C. GOODMAN: Dr. Lewis is going to
- 10 take a try at that.
- 11 DR. LEWIS: I will take a quick stab
- 12 at it. When I think of off label use, I think
- 13 of situations where clinicians are informally
- 14 borrowing information. The on label use to a
- 15 large extent consists of those specific
- 16 diseases that can be defined and for which
- 17 there are two phased trials leading to the
- 18 labeling or the unlabeled use.
- 19 In a hierarchical approach where you
- 20 borrow information, you can think of all those
- 21 different disease entities that cause similar
- 22 pain, for example neuropathic, like pain, as
- 23 being likely to be similar in terms of their
- 24 response because similarities are the
- 25 underlying mechanism of the pain transmission,

- 1 for example. Thus, a medication or a device
- 2 that is known to have applications along,
- 3 across the population of those diseases, is
- 4 highly likely to be effective in a similar
- 5 disease drawn from that population of diseases.
- 6 In other words, the diseases are exchangeable
- 7 at some level in the hierarchy, and this is
- 8 what I referred to in my talk as circumstantial
- 9 evidence of efficacy.
- 10 So if for example you had a disease
- 11 that was relatively uncommon, that had a high
- 12 morbidity associated with it, for which similar
- 13 diseases, for which the device or drug had been
- 14 shown to be effective in similar diseases, I
- 15 would believe that you could determine with a
- 16 high probability that the treatment would be
- 17 effective in that disease without the need for
- 18 independent evidence in that patient
- 19 population. And I would urge CMS to consider
- 20 those situations, especially if those diseases
- 21 are relatively rare, because it allows well
- 22 informed coverage decisions without the burden
- 23 of separate high level evidence for each one
- 24 independently.
- 25 DR. PRAGER: I completely agree with

- 1 what you just said. The question is, how would
- 2 you see the analysis actually getting
- 3 integrated into the system for that.
- 4 DR. C. GOODMAN: Dr. Lewis.
- 5 DR. S. GOODMAN: Isn't that a question
- 6 for CMS?
- 7 DR. C. GOODMAN: I would be interested
- 8 in hearing his response.
- 9 DR. LEWIS: I believe that it would
- 10 require the input of data to include the
- 11 knowledge of the underlying disease mechanisms
- 12 to define the population of diseases or the
- 13 group of diseases for which treatments are
- 14 likely to have similar but not identical
- 15 effectiveness, and I think that's a clinical
- 16 question. The goal is to create agreement on
- 17 what that group of diseases is, then examine
- 18 the evidence available within them so they can
- 19 be integrated, so I think that's the way I see
- 20 it being shown. But the first step, as many of
- 21 the questions have been answered, is that
- 22 clinical science has to define the domain of
- 23 diseases that are thought to be similarly
- 24 responsive.
- 25 DR. C. GOODMAN: Steve, but briefly.

- 1 DR. S. GOODMAN: Yes. This was
- 2 addressed partially taking the slide that I
- 3 showed with the extrapolation from adults to
- 4 children. So there's something between asking
- 5 for a full-fledged clinical trial and doing
- 6 what Roger suggested, which is just extending
- 7 it into these other conditions, which is to say
- 8 that we want some evidence, the prior evidence
- 9 counts partially, we will decide collectively
- 10 how much it counts, and you might be able to do
- 11 a trial with 60 patients instead of 250.
- 12 So there are all grades of
- 13 transferability of the prior evidence and that
- 14 can be decided both scientifically and on a
- 15 regulatory basis, to what extent you're going
- 16 to allow that extrapolation. It has a lot of
- 17 application here because of, you know, often
- 18 we're involved in situations of extrapolating
- 19 to older patients in the Medicare studies for
- 20 which there haven't been a lot of studies, but
- 21 there's been some. So there are all shades of
- 22 gray between doing everything and doing
- 23 nothing, and this is a place where I think it's
- 24 a very rich area for application.
- 25 DR. GOODMAN: Thanks, Steve. Curtis,

- 1 and then we're going to go to something else.
- 2 DR. MOCK: I want to go directly to
- 3 one of the questions that the panel is going to
- 4 be asked to vote on today and it specifically
- 5 addresses an answer that I'm still looking for,
- 6 and it's very clear. It has to do with you
- 7 explaining to us the strength of the Bayesian
- 8 methods and how those override the deficiencies
- 9 that there may be in studies that we read and
- 10 interpret, or you do, and studies that are
- 11 formed in the future. And I guess a subset of
- 12 the question is, this is where we are today,
- 13 where are we going?
- 14 I've never met any of you before today
- 15 but I have the impression that you all know
- 16 each other, it's a very small supraspecific
- 17 group, and it sounds like you all are believing
- 18 this concept. And I think that's tremendous,
- 19 but what happens five years from now or ten
- 20 years from now when there's not six of you, but
- 21 there's 6,000 of you trying to keep up with
- 22 interpreting and correlating the recent data
- 23 that we need to direct us where we need to go
- 24 with patient outcomes?
- 25 So please tell us, the panel, what

- 1 answer is going to be best when we're asked
- what our confidence is on that question, and
- 3 how is that answer going to work for CMS and us
- 4 as a population moving forward using the
- 5 Bayesian method of statistics?
- 6 DR. C. GOODMAN: Allow me to be a
- 7 little more specific. Imagine you've got a
- 8 white board in front of you and we need, for
- 9 starters, the three greatest potential
- 10 strengths of a Bayesian approach for
- 11 interpreting evidence. So we're looking for
- 12 your top three here, and we're looking for an
- 13 answer that does not require a statistician to
- 14 comprehend, we're looking for an answer that
- 15 can work within the Agency and is
- 16 comprehensible to a congressional staffer who
- 17 might ask.
- 18 DR. SANDERS: And you don't want the
- 19 design of a trial, you want --
- 20 DR. C. GOODMAN: We want to start with
- 21 interpretation of evidence, what are your top
- 22 three? Dr. Lewis, do you want to take the
- 23 first crack at that?
- 24 DR. LEWIS: A first crack, number one,
- 25 transparency and yielding probability

- 1 statements that are understandable and
- 2 correctly understandable by physicians,
- 3 policy-makers, regulators and the congressional
- 4 staffer.
- 5 DR. C. GOODMAN: So transparency is
- 6 your first?
- 7 DR. LEWIS: Transparency of
- 8 probability statements, statements about the
- 9 strength of evidence.
- 10 Number two is the ability to make
- 11 explicit the methods by which we consider
- 12 information from various sources of variable
- 13 strength and quality so that that evidence can
- 14 be updated as new information becomes
- 15 available.
- 16 DR. AXELROD: That seems to run
- 17 counter to some of the discussions we've heard
- 18 about the fact that this has to be done by
- 19 skilled people, and you need very experienced
- 20 statisticians and people who understand how to
- 21 do these things with a great deal of
- 22 specificity, which suggests to me that the
- 23 levels of transparency aren't quite so great as
- 24 you make it out to be.
- 25 DR. C. GOODMAN: Thanks for offering

- 1 that, Dr. Axelrod. We may concur with that
- 2 point, but let's get these three on the table.
- 3 So continue, Dr. Lewis, your explicit opinion
- 4 regarding strength and qualities.
- 5 DR. LEWIS: And the third comment I
- 6 would make is the explicit definition of the
- 7 utility function that links the quantification
- 8 of uncertainty with the ultimate decision that
- 9 maximizes the benefit to the patient
- 10 populations.
- 11 DR. C. GOODMAN: And if you could
- 12 repeat that, I got the first part of it.
- 13 Explicit definition --
- 14 DR. LEWIS: Explicit definition of the
- 15 utility function which links the quantification
- 16 of uncertainty with the selection of the
- 17 optimal decision to maximize benefit to
- 18 effective patient populations.
- 19 And then with your permission, I would
- 20 like to comment on the question from
- 21 Dr. Axelrod.
- 22 DR. C. GOODMAN: Just not yet, please.
- 23 DR. LEWIS: Yes, sir.
- 24 DR. C. GOODMAN: So Dr. Lewis posited
- 25 three such assertions, and Dr. Berry, do you

- 1 have a fourth?
- 2 DR. BERRY: I just wanted to add that
- 3 number two should include synthesis of the
- 4 various information.
- 5 DR. NORMAND: Here's a number one. I
- 6 think that one of the main benefits is that you
- 7 will actually get a quantitative summary, you
- 8 will get the probability that a particular
- 9 treatment is better than a comparison
- 10 treatment, a probability, that's number one.
- 11 DR. C. GOODMAN: Say it again.
- 12 DR. NORMAND: The probability of
- 13 benefit, explicit benefit of treatment A versus
- 14 treatment B, you do not get that from
- 15 frequentists.
- 16 DR. C. GOODMAN: Probability of
- 17 benefit.
- 18 DR. NORMAND: Yes, any size. Any size
- 19 you want.
- 20 DR. C. GOODMAN: And all you get from
- 21 a frequentist, at least as I understand it is
- 22 kind of a thumbs up, thumbs down, not a how
- 23 much.
- 24 DR. BERRY: Lewis's number -- that's
- 25 Lewis's number one as well.

- 1 DR. C. GOODMAN: So we have about
- 2 three of your top reasons, correct, as I
- 3 understand it. Yes, Dr. Normand?
- 4 DR. NORMAND: Just because -- so, this
- 5 is a reason that's looking forward to the
- future, because in the future we will have much
- 7 more data and different types of data to
- 8 combine any clinical trial for any decision, so
- 9 we will have genetic data, we'll have clinical
- 10 data, we may have patient survey data. So in
- 11 the future, because of the proliferation of
- 12 databases and electronic health records, we
- 13 will have much more diverse data sources to be
- 14 combined, and it is not -- the Bayesian method
- 15 gives you a way to do that.
- 16 DR. C. GOODMAN: So if I might
- 17 rephrase that, the Bayesian method provides
- 18 methodological opportunities which will be
- 19 enhanced by the greater availability of data,
- 20 and to use the technical term, our ability to
- 21 crunch such data in the future.
- 22 DR. NORMAND: I would say that it
- 23 provides, it's a method that will provide a
- 24 mechanism to summarize the continuum and
- 25 diverse and multiple data sources typically.

- 1 DR. C. GOODMAN: That's very helpful,
- 2 the continuum being everything that we will use
- 3 in regard to the observational stuff to top
- 4 shelf RCTs, for example. Thank you.
- 5 Now, just allow me to pursue this.
- 6 Thanks for the four or so swell reasons why
- 7 this is the greatest thing in the world. Now
- 8 we would like to hear three potential
- 9 weaknesses of the Bayesian approach in the same
- 10 context. I know that the several of you who've
- 11 spoken that way don't typically go that way,
- 12 but certainly you must have been exposed to
- 13 this or even accused of it from time to time.
- 14 Where are the greatest pitfalls?
- 15 DR. BERRY: So, I think Dr. Axelrod's
- 16 comment about having to have trained
- 17 statisticians, it's not the standard
- 18 statistical approach, and if you take a
- 19 Bayesian approach you have to first explain the
- 20 Bayesian approach to everybody you're talking
- 21 to.
- 22 In addition, and I forget who said it,
- 23 maybe it's related, when you get 6,000 people,
- 24 there will be some good Bayesians and some not
- 25 so good Bayesians. One of the things I'm

- 1 constantly doing is telling people that that's
- 2 a lousy Bayesian approach. So how do you, you
- 3 know, you can't call Berry every time, so how
- 4 are we going to do this? It takes training.
- 5 So I think those are the two, and
- 6 maybe it's only one weakness, but it's
- 7 substantial, and this gets back to my point
- 8 that we can't do this overnight because it
- 9 takes training, it takes getting physicians and
- 10 consumers so that they can understand what
- 11 you're doing and to build credibility.
- 12 DR. C. GOODMAN: I want to make sure I
- 13 understand your second point. Is another way
- 14 of saying that that you've got a roomful of
- 15 Bayesians and you're getting a roomful of model
- 16 approaches?
- 17 DR. BERRY: I don't know if that's
- 18 just another way of saying it, so it is a
- 19 choice of model, but it is, the Bayesian
- 20 approach and using a prior distribution and not
- 21 understanding the biology, not understanding
- 22 what the data shows, you can get lousy Bayesian
- 23 approaches, and who is going to judge what is a
- 24 lousy Bayesian approach?
- 25 DR. C. GOODMAN: So we'll be moving

- 1 forward with better Bayesian approaches, and
- 2 perhaps you're not in a good position now to
- 3 make some sort of a judgment about their
- 4 quality?
- 5 DR. BERRY: Correct.
- 6 DR. C. GOODMAN: Dr. Normand.
- 7 DR. NORMAND: So I would characterize
- 8 the introduction of Bayesian approaches as a
- 9 paradigm shift, and any paradigm shift is a
- 10 problem, so I would say that. I'm up here to
- 11 give you an anti-disadvantage, and I'm
- 12 surprised that you weren't saying it's the
- 13 prior. You're going to be attacked on the
- 14 priors, I don't think it's a disadvantage, I
- 15 actually think it's an advantage. And the
- 16 reason why it's an advantage is you're making
- 17 it precisely transparent. A frequentist using
- 18 a prior, it's a point prior, but they don't say
- 19 it.
- 20 DR. C. GOODMAN: Thank you, Dr.
- 21 Normand. Dr. Goodman, is this one of the
- 22 potential weaknesses?
- 23 DR. S. GOODMAN: Sort of.
- 24 (Laughter.)
- 25 The problem with the question is it

- 1 doesn't say compared to what, and I can
- 2 certainly list certain pitfalls.
- 3 DR. C. GOODMAN: It actually does. We
- 4 will get to weigh them. So what we are looking
- 5 for now is what is the downside, and then we
- 6 will weigh them.
- 7 DR. S. GOODMAN: So the compared to
- 8 what is the critical thing. There is almost
- 9 nothing I can think of as a technical problem
- 10 in the Bayesian realm that doesn't have an
- 11 exact correlate in the frequentist realm.
- 12 I would say, just to amplify what
- 13 Sharon said, that we're not used to talking
- 14 about many of the things that we need to talk
- 15 about. I'll just state some things that
- 16 always, everybody knows. Minimum important,
- 17 clinically important difference. I make the
- 18 point that every study has 80 percent power,
- 19 literally every study has 80 percent power for
- 20 something. For what? And then the question
- 21 is, so we routinely question 80 percent, you
- 22 know, if it falls below 80 percent power. But
- 23 if they say oh, it's to detect a 15 percent
- 24 difference as opposed to a 13 percent, that's
- 25 really uncommented on in virtually any review

- 1 capacity. We're forced to talk about that and
- 2 we're not used to talking about it, so is that
- 3 a weakness of the Bayesian paradigm, that we
- 4 must talk about things that we're uncomfortable
- 5 talking about, we don't know how to do it yet?
- 6 I will leave that up to you, but we don't quite
- 7 know how to discuss in public or private forums
- 8 some of the things that you must discuss when
- 9 we talk about comprehensive Bayesian
- 10 approaches.
- 11 DR. C. GOODMAN: And that hesitation
- 12 to discuss that issue is not confined to
- 13 Bayesians.
- 14 DR. S. GOODMAN: No, it's just rarely
- 15 gone over in the other contexts.
- 16 DR. C. GOODMAN: Thank you, Dr.
- 17 Goodman. Dr. Cox.
- 18 DR. COX: Following up just on this, I
- 19 feel like we're in sort of medieval times and
- 20 I'm sort of like a flat earth guy, and I'm
- 21 looking at the new world brought to me that
- 22 says it's really round, but I am challenged
- 23 with reading literature. So here I pick up a
- 24 paper and it describes a Bayesian analysis with
- 25 all this trim that you've talked about. How do

- 1 I tell -- I mean, I realize I'm ignorant, I'm
- 2 on the flat planet now, but how do I tell it's
- 3 a good Bayesian analysis? Is there a
- 4 codification of terms in the Bayesian world
- 5 that describes all of the ability to understand
- 6 all the factors that go into this analysis?
- 7 DR. C. GOODMAN: Dr. Lewis. And this
- 8 returns to number two on weaknesses.
- 9 DR. LEWIS: So, in many areas I join
- 10 you in the flat earth society. The question is
- 11 not whether or not the population of physicians
- 12 who must assimilate information from the
- 13 medical literature and apply that to their
- 14 clinical practice are going to be able to judge
- 15 the quality of Bayesian analyses. It's whether
- 16 they will be better or worse at that than they
- 17 are now in interpreting frequentist analyses.
- 18 And I firmly believe that someone who
- 19 teaches clinical medicine several times a week
- 20 for many hours in an academic environment, that
- 21 it is not realistic, given the complexity of
- 22 current medical research, to expect
- 23 practitioners planning primarily nonacademic
- 24 clinical practice careers, to have them
- 25 understand how to judge the quality of studies.

- 1 I think that we have to have other safeguards
- 2 for insuring the quality.
- 3 The advantage of the Bayesian approach
- 4 is that for those who are expert, it will allow
- 5 better gatekeeping for the quality of the
- 6 analyses, helping protect the integrity of the
- 7 information presented, but I don't believee
- 8 it's a method that will result in the average
- 9 clinician having better insight into the
- 10 strengths and the weaknesses than they now do.
- 11 DR. SANDERS: I agree with Dr. Lewis's
- 12 comment, but I certainly think that there would
- 13 be a place in this situation for like a user's
- 14 guide for the clinical literature based on
- 15 Bayesian methods. I mean, certainly there are
- 16 lots of techniques out there that we need to be
- 17 able to convey to the end user. You know, I
- 18 work off decision analysis and having to convey
- 19 what that black box means is another topic, but
- 20 certainly I think the education of the end
- 21 users would be something that should be looked
- 22 at as we push forward.
- 23 DR. C. GOODMAN: Thank you.
- 24 Dr. Satya-Murti.
- 25 DR. SATYA-MURTI: Thanks for bringing

- 1 MCID, minimum clinically important difference.
- 2 What you're saying, Dr. Goodman, is that
- 3 regardless of the type of analysis that you
- 4 subjected the study to, is it ultimately
- 5 important or not is the MCID criteria, as I
- 6 dealt with it in other areas. So that being
- 7 the case, even though the major advantage of
- 8 Bayesian analysis is probability, it will tell
- 9 you that it's 40 percent better than existing
- 10 treatment, or 80 percent and so on. So if
- 11 that's the major benefit of Bayesian technique,
- 12 then it still falls on the clinician.
- 13 DR. C. GOODMAN: Dr. Normand.
- 14 DR. NORMAND: So, what you can do is
- 15 the probability that the difference between the
- 16 treatment and comparison group is bigger than
- 17 X. So if X is bigger than the minimal clinical
- 18 difference, you can actually put that in there,
- 19 so I wanted to correct that.
- 20 DR. SATYA-MURTI: All right. If that
- 21 were the case, it still behooves the
- 22 decision-maker to then say, am I happy with a
- 23 20 percent improvement, am I happy with a
- 24 reduction of seizures from 12 to six, or am I
- 25 happy with the ability to read two more letters

- 1 on a chart. So, it still falls finally on
- 2 society's values and the decision-maker; is
- 3 that correct?
- 4 DR. NORMAND: It always is.
- 5 DR. SANDERS: Yes.
- 6 DR. C. GOODMAN: Did you finish your
- 7 point?
- 8 Dr. SATYA-MURTI: Yes. I wanted to
- 9 make that for the record, that the
- 10 decision-making hasn't changed regardless of
- 11 these shifts in paradigms.
- 12 DR. C. GOODMAN: Thanks. Steve?
- 13 DR. S. GOODMAN: And this is just the
- 14 second half of that sentence, which is yes, it
- 15 is up to the decision-making side on that, but
- 16 it is, the minimum clinically important
- 17 difference is inherently a decision analytic
- 18 construct, that is, it is a difference that
- 19 offsets the safety issues and the tolerability
- 20 and all of those. So if we have a complete
- 21 full-blown analysis, you can be assisted by
- 22 adding into the discussion of what's a
- 23 minimally clinically important difference
- 24 decision the analytical approaches such as
- 25 Dr. Sanders and Lewis talked about.

- 1 DR. SATYA-MURTI: And there's a lot of
- 2 subjectivity in that.
- 3 DR. S. GOODMAN: Absolutely, which
- 4 again, is the right people talking about the
- 5 right things, so you're not talking about
- 6 power, you're talking about how many seizures
- 7 should be traded off against how much
- 8 impairment driving is done by administering a
- 9 particular therapy.
- 10 DR. C. GOODMAN: Thank you. In order,
- 11 Dr. Dullum, Dr. Alvir and Dr. Hlatky. Dr.
- 12 Dullum?
- 13 DR. DULLUM: One of the advantages,
- 14 just so I can understand, is the probability
- 15 that the treatment will be better. Could that
- 16 also be a weakness with the ongoing analysis?
- 17 I mean, would it be like the weatherman saying
- 18 there's going to be a 60 percent chance that
- 19 there's going to be no rain today but, oh, by
- 20 the way, it did rain. So is this something
- 21 that when we see the probability, that we can
- 22 really rely on that as opposed to the
- 23 frequentist approach? Because it's kind of an
- 24 ongoing analysis, how much can you believe that
- 25 probability and go down that road?

- 1 DR. C. GOODMAN: Dr. Lewis.
- 2 DR. LEWIS: I will take a crack at it.
- 3 I think there are a couple of things that can
- 4 happen. One is that new information becomes
- 5 available and when incorporated into the prior
- 6 analysis changes the probability statement,
- 7 perhaps that the treatment is better controlled
- 8 by a certain amount. Lacking new information,
- 9 I think the probability statement is very
- 10 believable because it incorporates the prior
- 11 information and the available evidence.
- 12 The other strength of it and the other
- 13 place that differences can come into play is if
- 14 the prior information needs to be changed
- 15 because, for example, we have a new
- 16 understanding of the mechanism of disease, we
- 17 now know that there's a common pathway that
- 18 leads to this autoimmune disease and another
- 19 disease that we failed to recognize as
- 20 autoimmune. Now that we know there's a common
- 21 mechanism, we have a different prior for
- 22 believing the treatments would share in
- 23 efficacies.
- 24 We can picture this kind of paradigm
- 25 shift that would change the whole structure of

- 1 the analysis. Short of that, I would see the
- 2 probability of Bayesian being inherently more
- 3 stable than the kinds of statements we make on
- 4 points and null hypotheses.
- 5 DR. C. GOODMAN: Thank you. Dr.
- 6 Alvir.
- 7 DR. ALVIR: Thank you. One of the
- 8 things that struck me in an earlier
- 9 presentation, and I forget which one it was,
- 10 was that anybody can do a regression now, and
- 11 I'm old enough to have been in the business
- 12 when not everybody could do a regression. So
- 13 given what I believe is this Bayesian creep,
- 14 with more and more software out there, the fact
- 15 that we have this Bayesian software, in five or
- 16 ten years we could be up there doing a
- 17 presentation and saying, you know, anybody can
- 18 do Bayesian analyses now.
- 19 And again, you know, we have similar
- 20 problems, and again, I think the classical or
- 21 frequentist versus Bayesian is, for me it's an
- 22 overblown argument. But you know, I think it's
- 23 coming that there is going to be, you know,
- 24 abuse of Bayesian methods in the future, and
- 25 what can we do to prevent that? I know there

- 1 is all that variability of projecting into the
- 2 future, but could you at least give us some
- 3 ideas?
- 4 DR. C. GOODMAN: Thank you. Just a
- 5 few.
- 6 DR. SANDERS: Quickly, I think this
- 7 returns to the peer review process, panels like
- 8 this, peer review for journals. I mean,
- 9 certainly like the Annals have some statistical
- 10 reviewers for all of their articles, and
- 11 certainly if this is the case they might bring
- 12 on more of a Bayesian statistician as part of
- 13 the review process. I think that, you know,
- 14 regardless of the method, there's always going
- 15 to be a point where we need to turn to those
- 16 types of mechanisms.
- 17 DR. C. GOODMAN: Dr. Hlatky.
- 18 DR. HLATKY: I guess I'm going to
- 19 follow up in a sense because I heard something
- 20 about one of the advantages is transparency,
- 21 and I think you're using the word transparency
- 22 in a different way than I would use it.
- 23 Transparency means that anybody can see it and
- 24 understand it, and I think when you guys are
- 25 saying transparency, you mean that you have

- 1 these complicated mathematical functions that
- 2 are laid out in some way that a highly trained
- 3 expert can understand and is communicated
- 4 explicitly, rather than implicitly.
- 5 So my question to you is, what about
- 6 getting to the average doc understanding what
- 7 this is and not saying, well, you know, you
- 8 guys can cook up anything with this method?
- 9 DR. C. GOODMAN: Dr. Lewis.
- 10 DR. LEWIS: First, I agree with the
- 11 way you're using transparency, and it is
- 12 actually the way that I was hoping that I was
- 13 using it as well. What I mean by transparency
- 14 would be in terms of the user of the
- 15 information derived from the analysis is that
- 16 they understand what the analysis looked at.
- 17 So for example, if there's a probability
- 18 statement that says there's a 78 percent
- 19 probability of survival six months greater with
- 20 treatment A versus treatment B, that is a
- 21 statement that most clinicians can understand.
- 22 It's the kind of statement that they all hope
- 23 the treatment analysis leads to, but it
- 24 doesn't.
- 25 So the irony here in the current

- 1 popular approach, we fool ourselves into
- 2 thinking that what we are comfortable with is
- 3 what we understand, but in fact our comfort is
- 4 based on a comfort with a complete lack of
- 5 understanding. So that's what I mean by
- 6 transparency.
- 7 There is a second level of
- 8 transparency that affects not the clinician
- 9 reading the study but at the peer review
- 10 process in reviewing the study, or for example
- 11 another statistician attempting to replicate
- 12 the analysis. And that is, the process of
- 13 Bayesian analysis in many ways forces one to
- 14 write down an assumption in a more explicit way
- 15 because they are overt as opposed to covert,
- 16 and that first of all makes it more
- 17 reproducible, but most importantly invites an
- 18 appropriate discussion of the merits of the
- 19 assumption.
- 20 With a frequentist analysis, many of
- 21 the assumptions are hidden, which completely
- 22 avoids or obscures the scrutiny that they ought
- 23 to undergo. Let me give you a concrete
- 24 example. Every time you see longitudinal
- 25 modeling with generalized estimation

- 1 statements, how often do they tell you the
- 2 covariate? Not very often. How many of the
- 3 readers or the peer reviewers understand what
- 4 effect that means on the stability of the
- 5 estimates? It's a very small fraction, and yet
- 6 it can change a qualitative positive result to
- 7 a qualitative negative result.
- 8 DR. C. GOODMAN: Thank you, Dr. Lewis.
- 9 I want to move on to what is the
- 10 equivalent to our second question. You were
- 11 very helpful in elucidating three to four
- 12 strengths and three to four weaknesses. Now,
- 13 for the purposes of designing studies, and what
- 14 I'm imagining now is an enterprising and well
- 15 informed sponsor for a new procedure,
- 16 technology, some type of intervention, wanting
- 17 to maybe approach CMS to try to figure out what
- 18 sorts of evidence might CMS want to weigh in
- 19 what might be a national coverage
- 20 determination.
- 21 So what we're wondering, then, is what
- 22 might be, how might, for the design study
- 23 purpose, would this potentially strengthen, the
- 24 Bayesian approach outweigh the potential
- 25 liabilities in the design of a study? We're

- 1 thinking about helping someone design a study,
- 2 it doesn't have to be in consultation with CMS
- 3 maybe, you could do it on your own, but with
- 4 the Bayesian ups and downs, how do we come out
- 5 on that, how confident are we that the
- 6 strengths of the Bayesian approach would
- 7 prevail specifically? Dr. Berry.
- 8 DR. BERRY: So, to give you the three
- 9 top reasons, be adaptive, online learning, we
- 10 talked about that. Using predictive
- 11 probabilities, asking where is the study going,
- 12 and doing it through the course of the trial.
- 13 And the third one is using prior information,
- 14 using parallel information that's coming from
- 15 other sources during the course of the trial.
- 16 So I would focus on those three.
- 17 And Dr. Goodman, the benefits, I mean,
- 18 I can't give you weaknesses for design because
- 19 it's so natural, it's so -- I mean, it is true
- 20 that there are things that can happen along the
- 21 way for the same reason of experts and
- 22 non-experts designing these studies, but it
- 23 makes so much sense to be looking at the data.
- 24 You said what information would CMS
- 25 need. You put that in the trial. You say what

- 1 information does CMS need, let's build the
- 2 study to give that, and if that means we can do
- 3 it with 300 patients depending on the data, or
- 4 if it means 3,000, maybe that's beyond the pale
- 5 and we have to cut it at 1500 or something, but
- 6 we will try.
- 7 DR. C. GOODMAN: Dr. Salive, do you
- 8 have a question or inquiry specific to this?
- 9 DR. SALIVE: I guess this relates back
- 10 to the comments earlier, so we do get companies
- 11 that come in and say they're designing their
- 12 trial and they are considering FDA's input and
- 13 they want our input at the same time for doing
- 14 a trial for a new innovative product. And the
- 15 question revolves, my question revolves around
- 16 prior information and sometimes we ask what
- 17 that is and, you know, hand waving ensues. And
- 18 the question is really, how crucial is that in
- 19 this scenario, because sometimes we're told it
- 20 will be a noninformative prior, other times we
- 21 get some kind of rationale.
- 22 So, you know, we saw many of the
- 23 analyses earlier that I thought suggested that
- 24 the prior does affect somewhat the final
- 25 results, and so what if they're wrong, how

- 1 useful is a noninformative prior, or is this
- 2 just too specific of a question?
- 3 DR. C. GOODMAN: Dr. Berry.
- 4 DR. BERRY: No, I don't think it is
- 5 too specific. I can tell you this, I've been
- 6 involved in many of the CRH considerations.
- 7 The standard is that we use one or more priors.
- 8 The issue of bringing in prior information is
- 9 difficult. It's, what we've taken to do is
- 10 that we have two priors, one prior for the
- 11 design aspect using the information,
- 12 recognizing that the FDA has its own prior, and
- 13 their own prior may be noninformative. So we
- 14 build the trial so that it's sufficient from
- 15 the perspective of the prior distribution of
- 16 the company, the experts that the company has
- 17 employed or hired, but the goal is to show
- 18 based on a noninformative prior that the device
- 19 is effective to the extent that it's necessary.
- 20 So it's a problem, it's not an easy
- 21 thing to do, and there is a great deal of
- 22 discussion with regulators, and there's room
- 23 for bias. You know, somebody can bring a study
- 24 that says I want to use this prior. You say,
- 25 didn't you do some other studies that weren't

- 1 quite so positive. So it's not an easy
- 2 question.
- 3 DR. C. GOODMAN: Thank you. Steve
- 4 Goodman, will you answer the question on the
- 5 part of potential strengths outweighing
- 6 potential liabilities?
- 7 DR. S. GOODMAN: Well, I was going to
- 8 give the same answer to Marcel's.
- 9 DR. C. GOODMAN: Is it still relevant?
- 10 DR. S. GOODMAN: Yes.
- 11 DR. C. GOODMAN: Thank you.
- 12 Dr. Goodman.
- 13 DR. S. GOODMAN: In the earliest
- 14 phases of development I think that
- 15 noninformative priors are usually the way to
- 16 go, and if they're not convincing to you, if an
- 17 informative prior is not convincing to you,
- 18 then you shouldn't allow it to be used. As
- 19 Dr. Berry mentioned before, there is also
- 20 learning that goes on during trials, and just
- 21 the statement analytically, the two endpoints
- 22 are related to each other, is in itself a prior
- 23 even if you say you don't know before you start
- 24 it how related.
- 25 Just that statement, this informs me

- 1 about that. If this is high, if the response
- 2 rate is high, I expect the mortality probably
- 3 will be lower. Just that statement, without
- 4 anything else you learn during the trial, that
- 5 in itself in a sense is an implicit prior that
- 6 allows you to learn during the trial. So it is
- 7 not critical that the priors with regard to the
- 8 main effect be informative; in the earliest
- 9 stages of development we probably shouldn't
- 10 make them informative unless they're entirely
- 11 convincing.
- 12 But on the other hand, to not allow
- 13 evidence-based priors when there is true prior
- 14 evidence, for example, evidence that is
- 15 relevant to children, children relevant to
- 16 adults, or 50-year-olds relevant to
- 17 70-year-olds is an advantage to you, because
- 18 you might not want more evidence than is, than
- 19 common sense would require.
- 20 DR. C. GOODMAN: Thank you, Steve.
- 21 Dr. Salive, is that satisfactory? Good.
- 22 Further points? Dr. Dullum.
- 23 DR. DULLUM: But isn't that one of the
- 24 advantages of a Bayesian, that if the prior is
- 25 noninformative, as you go along further in the

- 1 analysis, that that becomes less important as
- 2 you get concrete information?
- 3 DR. S. GOODMAN: Yes, that was the
- 4 point, but you have to have the initial
- 5 linkage, you have to model something that
- 6 allows the information to be borrowed as you go
- 7 along. It has to be built into the design that
- 8 allows you to say if this is high, you know, it
- 9 tells me something about this or I will shift
- 10 to a surrogate. You don't have to give your
- 11 prior opinion about exactly what the nature of
- 12 that relationship is going to be. You just
- 13 have to say as I learn, I will allow myself to
- 14 adapt to the trial. Without that statement,
- 15 there is no basis for the application.
- 16 DR. C. GOODMAN: Thank you. Dr.
- 17 Goodman, your voice carries pretty well, but do
- 18 come to the mic whenever you have something
- 19 that you want us to remember. Other points to
- 20 be made with regard to this?
- 21 I'm still interested in nailing down
- 22 more in our portion too whether the potential
- 23 strengths outweigh the weaknesses for designing
- 24 studies, and then interpreting them. Curtis
- 25 Mock.

- 1 DR. MOCK: I just wanted to clarify,
- 2 I'm sorry I'm going back to this, I just can't
- 3 get it. I think I heard you say, Dr. Berry,
- 4 that one of the weaknesses of the Bayesian
- 5 method is that there is no uniformity or
- 6 reproducibility in how a particular
- 7 meta-analysis is going to be performed by
- 8 different statisticians; is that correct?
- 9 DR. BERRY: No. I didn't mean to say
- 10 that. It is true, just as it's true for the
- 11 frequentist methods, that if you have two
- 12 statisticians that are doing the meta-analysis,
- 13 they may use slightly different models, they
- 14 may use different trials as part of the thing,
- 15 so there is that aspect. But if two
- 16 statisticians have the same prior distribution,
- 17 the same kind of hierarchical setup, they're
- 18 going to get the same answer.
- 19 DR. MOCK: I too work with residents
- 20 on a regular basis and what I'm looking for is
- 21 that power to say to the residents, don't use
- 22 taxon with the HER positive/ER negative
- 23 patients, and know that it's correct, and not
- 24 have somebody say the opposite thing two hours
- 25 ago and have the press pick it up and broadcast

- 1 it. So I'm saying, is there a manner in which
- 2 you can see that there would be rules for the
- 3 Bayesian process that would give us uniformity
- 4 of conclusions?
- 5 DR. BERRY: So, we design lots of
- 6 studies, we send them to the FDA. They say,
- 7 you send us a code, they may even rewrite the
- 8 code, they want validation, and they want to
- 9 ensure, if this is a registration trial, they
- 10 want to ensure that the model is doing exactly
- 11 what it says it's going to do, that they
- 12 understand it, and we've had this kind of thing
- 13 where everybody is happy and the thing runs
- 14 great.
- 15 So it's not for the design
- 16 perspective, it's not really an issue. It is
- 17 reproducible. There is a certain amount of
- 18 variability in the prior distribution that we
- 19 use and exactly what the modeling is, are we
- 20 going to do separate modeling as I did in the
- 21 ICD example across the five years, or am I just
- 22 going to combine all five years? Those are
- 23 choices, but if two people make the same choice
- 24 they're going to get the same answer.
- 25 DR. C. GOODMAN: Dr. Lewis, on this

- 1 question?
- 2 DR. LEWIS: Yes. I think in terms of
- 3 trying to protect yourself against the
- 4 conclusions of the study being diversions, or
- 5 stated and understood, the kinds of probability
- 6 statements that a Bayesian analysis allows you
- 7 to make are actually less prone to those
- 8 changes in meaning that occur when you play the
- 9 telephone game with clinical teaching.
- 10 There is a second issue that was
- 11 partially addressed and I just want to clarify
- 12 it, which is the need to have standards for the
- 13 quality of the Bayesian analysis just like we
- 14 have standards for the quality of clinical
- 15 trial design, and standards for the
- 16 communication of that quality, for example a
- 17 consort diagram is a requirement for
- 18 publication of an RCT. I believe that there is
- 19 a need for some definitions regarding what is a
- 20 quality reporting and conduct of a Bayesian
- 21 analysis, and that will have to be developed
- 22 over time and will help protect us against poor
- 23 quality Bayesian analyses as the number of
- 24 Bayesians increases.
- 25 DR. C. GOODMAN: Thank you, Dr. Lewis.

- 1 Dr. Steve Goodman, on this point?
- 2 DR. S. GOODMAN: Yeah. I just want to
- 3 address, which has come up from a number of
- 4 you, the perceived problem of interpreting
- 5 complicated models. The reasons these models
- 6 are complicated is because the questions were
- 7 complicated. It wasn't the models. Any answer
- 8 that would be presented to a complicated
- 9 question that put, any method that looked
- 10 incredibly simple is probably wrong, or it
- 11 doesn't capture the uncertainty properly.
- 12 So what you saw was an attempt to
- 13 grapple with the true dimensions of uncertainty
- 14 in what were inherently complicated questions.
- 15 You're asking how do we combine observational,
- 16 RCQ studies and RCT studies that might have
- 17 five different sets of eligibility criteria and
- 18 all these covariate measures? These are
- 19 complicated questions, so we can choose to
- 20 ignore the complexity and have a method that
- 21 will give the same answer every time, you
- 22 mentioned the uniform answer, or acknowledge
- 23 that, you know, in reading the tea leaves
- 24 there's some complexities here, and in fact
- 25 there's a range of answers.

- 1 So I think the assumption of your
- 2 question that getting a single uniform answer
- 3 is necessarily the ideal outcome to a
- 4 complicated question may in itself be not the
- 5 optimal model for trying to figure out what the
- 6 right answer is. For a power like you, you
- 7 have to deal with uncertainty, you have to make
- 8 sure the uncertainties are represented
- 9 properly, and that's what these models are
- 10 doing, and they're complicated because the
- 11 questions you're asking are complicated. You
- 12 don't ask simple questions; you don't need us,
- 13 and you don't need whole panels to answer
- 14 simple questions.
- 15 DR. C. GOODMAN: Thank you, Steve
- 16 Goodman. Dr. Normand, on this point?
- 17 DR. NORMAND: Yes. So, I just wanted
- 18 to add on that last point is, I also want to
- 19 emphasize that when someone summarizes the
- 20 information used in a complicated analysis, the
- 21 summary is not complicated, the summary can be
- 22 in English and in three sentences, and you're
- 23 not going to see those subscripts and
- 24 subscripts, that's behind. But the point is
- 25 that in actually reading the paper, you're

- 1 going to see the probability. So it can be,
- 2 the answer that you need to know is not going
- 3 to be an equation with 3,000 subscripts.
- 4 DR. C. GOODMAN: Dr. Hlatky.
- 5 DR. HLATKY: I'm going to have to
- 6 leave before too long so I'm going to say
- 7 something that I think is important, and I
- 8 basically think there is a place for this, but
- 9 it's conditional on something very important,
- 10 which, I'm convinced the more I read the
- 11 material where the FDA in its guidance says the
- 12 companies need to come to them when they're
- 13 designing a trial, go over the information, get
- 14 it locked in beforehand, and in that sense they
- 15 will say okay, we're willing to deal with this
- 16 analysis when you come to us for coverage. I
- 17 would say that that's a good lesson for CMS,
- 18 you know, if you want to use these methods in
- 19 designing trials, encourage people to come in
- 20 early in the design stages.
- 21 But the second thing, and I think a
- 22 corollary to that is I think that it seems to
- 23 me that if you want to use these methods, you
- 24 have to have people on staff here in the Agency
- 25 who are technical experts in these methods who

- 1 can look at what's being presented and say
- 2 well, this is good, this is not so good, push
- 3 back, maybe get information that they analyze
- 4 separately. I think based on the FDA guidance,
- 5 that they sometimes want to do the analysis
- 6 independently. I think that that would give an
- 7 enormous amount of credibility to these things,
- 8 which quite frankly are being driven by a lot
- 9 of commercial, there's a lot of interests out
- 10 there, there's a lot of money on the table with
- 11 every one of these CMS decisions, and we
- 12 shouldn't fool ourselves into thinking that
- 13 there isn't.
- 14 So I mean, I think that it has to be
- 15 bulletproof is really what it has to be. So I
- 16 would say that I think these are encouraging
- 17 techniques, but I do think that we need experts
- 18 here in CMS to deal with them, and there has to
- 19 be an interchange.
- 20 DR. C. GOODMAN: Thank you, Mark.
- 21 Dr. Grant.
- 22 DR. GRANT: I have to go too, so I
- 23 will echo what Mark just said, and it is true.
- 24 The same kind of misuse, misinterpretation and
- 25 difficulties with traditional modes of

- 1 synthesis and analysis, are just, you know, are
- 2 just everywhere. I see it all the time and I
- 3 don't think it's really any different there
- 4 versus here. At the same time, I think that,
- 5 if there's one point that wasn't made, and if
- 6 it was maybe I missed it, was the issue of
- 7 equipoise that in designing trials there is one
- 8 reason, or one compelling reason, that you're
- 9 exposing true patients to treatments that don't
- 10 work, which I would think has a lot to say for
- 11 using the design approach from that
- 12 perspective.
- 13 I am entirely convinced that having
- 14 direct positive statements associated with
- 15 certainty will improve the system. Is there
- 16 evidence to support that, I don't know. But,
- 17 that's all.
- 18 DR. C. GOODMAN: Thank you, Dr. Grant.
- 19 I want to pursue now, I think we've heard
- 20 about, most of what we need to know for
- 21 question two from our experts with their
- 22 opinions. Now our question three has to do
- 23 specifically with looking at whether CMS itself
- 24 as an agency should incorporate evidence that
- 25 uses Bayesian approaches in trials, as well as

- 1 in technology assessments, and I think that
- 2 technology assessments here means secondary
- 3 syntheses, often depending upon systematic
- 4 reviews and other secondary analyses.
- 5 And so having discussed with you first
- 6 the question about the relative strengths and
- 7 weaknesses vis-a-vis a frequentist approach,
- 8 having talked about the net effect of the
- 9 strengths and liabilities of Bayesian for
- 10 designing studies and interpreting them, now
- 11 let's turn to, if it's okay with the panel,
- 12 turn to, well, what would be the advice to this
- 13 Agency, to CMS which has to make practical
- 14 decisions that will affect millions of
- 15 Americans and needs to hold up to public
- 16 scrutiny.
- 17 This is sort of a different world now.
- 18 We're out of the classroom and graduate school
- 19 and into the public fray here. So let's
- 20 explore, if you will, the clinical trials piece
- 21 first. CMS may be involved in, as was just
- 22 said, may be talking with sponsors of
- 23 interventions about how they might design
- 24 clinical trials or other kinds of data
- 25 gathering to ultimately inform a coverage

- 1 decision, and how confident are you that the
- 2 Agency might encourage that or look well upon
- 3 that, using Bayesian approaches for clinical
- 4 trials? Comments by our experts? Dr. Normand.
- 5 DR. NORMAND: So the answer is yes,
- 6 you should do this, understanding that you have
- 7 to have the expertise to do this.
- 8 DR. C. GOODMAN: Is it always yes, Dr.
- 9 Normand?
- 10 DR. NORMAND: Yes.
- 11 DR. C. GOODMAN: Dr. Berry?
- 12 DR. BERRY: Yes. People talked about
- 13 over time when you publish these results, I can
- 14 understand them. And, you know, it's with some
- 15 reluctance that I refer to something that is my
- 16 own paper, but the thing that I showed the New
- 17 England Journal of Medicine, a paper on breast
- 18 cancer in women over 65, published May 14th,
- 19 last month, that is wholly, completely
- 20 Bayesian, and you can read it, you can
- 21 understand it, we've gotten some comments, two
- 22 reviewers said this is a wonderful study. You
- 23 know, you didn't have to have a full study
- 24 because you build in this Bayesian thing and
- 25 you get the answer in the shortest time

- 1 possible, and it's like a love fest. And it's
- 2 understandable, and you should read it to see
- 3 if you can understand it.
- 4 DR. C. GOODMAN: Dr. Lewis, and then
- 5 Dr. Goodman.
- 6 DR. LEWIS: I agree the answer is yes
- 7 and it's always yes. There are situations in
- 8 which the net benefit of the Bayesian approach
- 9 over a more traditional approach will be
- 10 relatively less. Although there may be a
- 11 leviathan situation in which the sponsor is so
- 12 convinced of the effects of a therapy that
- 13 they're willing to invest, almost squander
- 14 extraordinary resources in the testing, and if
- 15 the sponsor is willing to do that, they will
- 16 end up with an easily interpretable answer.
- 17 They could have obtained that answer sooner, at
- 18 less cost and putting fewer patients at risk
- 19 had they adopted the Bayesian approach. I
- 20 don't know whether that's a concern of CMS.
- 21 DR. C. GOODMAN: Thank you. Steve
- 22 Goodman.
- 23 DR. S. GOODMAN: I'll just flip the
- 24 question around and say, imagine if the world
- 25 was entirely Bayesian, we all understood the

- 1 mechanics and the vocabulary, what reasons
- 2 would we have to go to the current system? I
- 3 can't imagine one.
- 4 DR. C. GOODMAN: Thank you. Dr. Mock.
- 5 DR. MOCK: Thank you for those answers
- 6 regarding this question. Is there a difference
- 7 in your answers regarding technology assessment
- 8 versus study design? So the statistics are the
- 9 same regardless.
- 10 DR. C. GOODMAN: Let the record
- 11 reflect that the four experts were shaking
- 12 their heads that there was no difference.
- 13 Let me pose a little bit of kind of
- 14 like a second loaded question that is relevant
- 15 to question three. Certainly coverage and
- 16 evidence development is an important part of
- 17 the set of tools or processes that the Agency
- 18 has been using more or less over the years to
- 19 learn as we go. And actually part of the name
- 20 of this group, the ED in MedCAC is evidence
- 21 development. As I believe Dr. Luce suggested,
- 22 is a Bayesian approach inherent in coverage and
- 23 evidence development or an important tool for
- 24 it, or something that should be explicitly
- 25 stated when innovators and other sponsors come

- 1 to seek a national coverage determination?
- 2 In other words, if it is an occasion
- 3 on which the Agency might want to suggest
- 4 coverage with evidence development, would the
- 5 Agency might want to discuss the use of
- 6 Bayesian approaches in that arrangement? Steve
- 7 Goodman.
- 8 DR. S. GOODMAN: I think others have
- 9 spoken to this and very well, and I just want
- 10 to say two things about that. One is,
- 11 certainly it is one of the only ways to
- 12 coherently think about how to add up and
- 13 accumulate the sometimes different information
- 14 that you're going to get from the evidence
- 15 development model after provisional, we'll say
- 16 a provisional coverage decision, than the data
- 17 that went before it. The data that went before
- 18 it may have been an RCT. The data that comes
- 19 after it, as was pointed out, may be an
- 20 observational study, it may be noncomparative,
- 21 and how to put those together is very very
- 22 tricky, and I can't imagine doing it in other
- 23 than this manner.
- 24 That said, and this addresses
- 25 something that Dr. Satya-Murti said before,

- 1 this is something you're acutely aware of, the
- 2 incentives to do a proper study after even a
- 3 provisional coverage assessment sometimes slip
- 4 away, and this is something the FDA has come
- 5 across as well. Once it's covered, there's
- 6 often very very little incentive to get more
- 7 evidence because you're in a holding pattern,
- 8 and unless you have some sort of enforcement
- 9 pattern, that is a time-limited approval under
- 10 which it is required that more evidence be
- 11 gathered of a certain type that actually will
- 12 change your, will be sufficient to change your
- 13 decision depending on how it comes out, it
- 14 won't work.
- 15 So that's something for you to decide,
- 16 that's not a statistical issue, but it's a very
- 17 very complicated issue since your decisions
- 18 themselves affect both the quantity and quality
- 19 of the information that comes after, and you
- 20 have to think very carefully of whether the
- 21 registries or models that you set up actually
- 22 generate the information that you need.
- 23 Sometimes they don't. They're very well
- 24 intentioned, but at the end of the day they
- 25 don't give you the information that allows you

- 1 to actually modify the decision when the
- 2 information comes in.
- 3 DR. C. GOODMAN: Thank you, point well
- 4 taken. Dr. Satya-Murti.
- 5 DR. SATYA-MURTI: Yeah, thanks. I'm
- 6 glad you iterated that and asked us to consider
- 7 that earlier this morning. I really think
- 8 saying no is infinitely harder, so if at all
- 9 possible, and our premise is, if in the
- 10 recommendation dossier like FDA does, CMS would
- 11 come out with that, or even build it into the
- 12 executive level language, I don't mean a CFR,
- 13 but within the Agency's language they define
- 14 what is reasonable and necessary and so on. If
- 15 we can carefully put in verbiage that says that
- 16 any coverage is really time and evidence
- 17 dependent, it could be annulled, and maybe
- 18 that's too harsh a word, but this is a pro tem
- 19 decision, and that's apparently what you are in
- 20 de facto doing under the guidance or documented
- 21 language.
- 22 DR. C. GOODMAN: Thank you. Other
- 23 comments on this point across the panel?
- 24 Dr. Dullum.
- 25 DR. DULLUM: Yes. I think if you can

- 1 roll in the observational data with the written
- 2 approval, you could actually use streamlined
- 3 better therapy, maybe even find subgroups, I
- 4 don't know that this is possible, subgroups
- 5 that would also benefit from the treatment
- 6 process and it would really help to direct care
- 7 in that aspect.
- 8 DR. C. GOODMAN: Thank you, Dr.
- 9 Dullum. Dr. Grant.
- 10 DR. GRANT: Yes, just along these
- 11 lines, I think this is a point well taken for
- 12 the CED. There needs to be significant
- 13 attention to which parameters, which evidence
- 14 needs to be informed, very careful specific
- 15 attention, and I think otherwise, you're not
- 16 going to be in the circumstances to be able to
- 17 see an active interest and consideration being
- 18 formed, and that really is avoidable. So the
- 19 probability should be relatively low, we should
- 20 know whether or not to proceed with adoption or
- 21 reject it at that particular time.
- 22 DR. C. GOODMAN: Allow me to, with the
- 23 permission of the panel, ask sort of a
- 24 follow-up question for number three with regard
- 25 to the advisability of employing Bayesian

- 1 methods compliant with the Agency, and it has
- 2 to do with innovation, and I think you touched
- 3 on it earlier today, so here's the issue.
- 4 The MedCAC in the past, at least some
- 5 of the ones in which I participated, and
- 6 coverage when we look at coverage
- 7 decision-making by other major payers in the
- 8 U.S. and frankly in the world, one of the
- 9 issues that arises is that technologies evolve
- 10 over time. So the gizmo changes over time and
- 11 the extra pieces, people who apply the gizmo
- 12 changes over time. Certainly in the device
- 13 realm, companies invent themselves around each
- 14 other all the time.
- 15 So innovation is occurring in real
- 16 time as we speak here, and some of the things
- 17 we've heard about in discussions between
- 18 innovators, regulators and payers is that if
- 19 you think there's something to think about in
- 20 innovation, then innovators need signals about
- 21 what's going to be expected of them over time
- 22 as far as evidence requirements and other
- 23 hurdles, and at the same time we need to be
- 24 able to recognize that the innovation isn't the
- 25 ones that we think.

- 1 That said, can you address the matter
- 2 of the ability of Bayesian methods, if there
- are any, to account for or reflect innovation
- 4 as it unfolds over time, and be able to drag
- 5 that into more informed coverage
- 6 decision-making? Dr. Normand.
- 7 DR. NORMAND: I don't know if this is
- 8 going to answer your question directly or get
- 9 to all of the pieces you want, but certainly
- 10 there are sources of variation that will be
- 11 accounted for in the Bayesian method, and these
- 12 relate to both over time it would relate to,
- 13 let's say with a surgical device,
- 14 surgery-specific variation. It would always
- 15 relate to device-specific variation. And so
- 16 there are pieces of the innovation as you model
- 17 the device longitudinally, and you would try to
- 18 separate out those components that you realized
- 19 were changing over time.
- 20 And so again, it amounts to a complex
- 21 model because you're trying to separate out
- 22 lots of pieces of information that would impact
- 23 on the variation of the outcomes which relate
- 24 to more centers using it, perhaps different
- 25 skilled surgeons using it, a different patient

- 1 population using it, or the device changing
- 2 over time. So again, those are all components
- 3 that make the model more complex, but again,
- 4 it's a natural fit to a type of Bayesian model
- 5 that says okay, we can try to separate those
- 6 out a little bit over time.
- 7 DR. C. GOODMAN: So, that's partially
- 8 helpful. What you've answered, then, is at any
- 9 given time there may be variations on a
- 10 technological theme, and Bayesians can kind of
- 11 identify those and follow them individually?
- 12 DR. NORMAND: I'm saying that you
- 13 would have at a given point in time, in theory
- 14 you would have all the longitudinal information
- 15 prior to that time, so all of the changes made
- 16 in that device, et cetera, those things happen,
- 17 and then if you wanted to look at those things
- 18 right now, if we look at what happened, it's a
- 19 very complex model but in theory it could be
- 20 handled within a Bayesian framework.
- 21 And then the second thing you're maybe
- 22 asking is about future predictions of things,
- 23 with this type of change made in this
- 24 mechanism, if you change the device, if you do
- 25 this, if you do that, what kind of impact would

- 1 that have on future types of patients, and
- 2 that's more of a predictive probability going
- 3 into the future.
- 4 DR. C. GOODMAN: Still drawn from your
- 5 progress.
- 6 DR. NORMAND: Well, it's today
- 7 posterior, because you've got to believe as a
- 8 Bayesian, right now I can tell you, and I'm
- 9 being a little dramatic here, but you can get
- 10 the best information, have the best evidence
- 11 you have available right now and based on that,
- 12 you write and choose what you're thinking, that
- 13 becomes your prior for future events, but
- 14 that's basically what Bayesians do.
- 15 DR. C. GOODMAN: Thank you.
- 16 Dr. Berry.
- 17 DR. BERRY: This is, the Bayesian
- 18 person is absolutely ideal for doing that, and
- 19 in fact it was one of the main reasons that CRH
- 20 had this Bayesian initiative, because they
- 21 would say well, devices are so different from
- 22 drugs, at least back then they were in that
- 23 they would change them all the time, and we
- 24 want to be borrowing information from the
- 25 pervious version of the device, and one can do

- 1 that in a number of ways, not the least of
- 2 which is the hierarchical approach.
- 3 Gillian mentioned that the person that
- 4 did her Bayesian analysis on hierarchical
- 5 modeling was Lurdes Inoue, and she did her
- 6 dissertation at Duke and her dissertation was
- 7 precisely on this question. You have a device
- 8 that you've changed somewhat. You'd like to
- 9 have evidence in a clinical trial or some
- 10 evidence, high level evidence base that it's
- 11 not changed very much and that the outcome is
- 12 very similar. But you don't want to run a
- 13 thousand-patient trial, so you go back to the
- 14 lab and you say there are measures in the lab
- 15 that may be predictive, that may be related to
- 16 the performance of the device, and we concede
- 17 that that's true.
- 18 But we built a model as Steve Goodman
- 19 suggested here, not -- what he was talking
- 20 about was longitudinally, but here it's the
- 21 preclinical to the clinical. So imagine four
- 22 pieces where you've got preclinical on the
- 23 current device, clinical on the current device,
- 24 preclinical on the modification of the device,
- 25 some small amount of clinical on the

- 1 modification of the device, but the totality of
- 2 the evidence pulls together the question of is
- 3 the modification of the device doing the same
- 4 thing as the previous version. So that's just
- 5 one example of the kind of thing that you can
- 6 do to borrow across the various levels of the
- 7 technology changing.
- 8 DR. C. GOODMAN: Okay. Could you just
- 9 finish this sentence for me? So, a Bayesian
- 10 approach is a credible method for assessing
- 11 evidence of effectiveness of an intervention
- 12 even as it is evolving over time because what.
- 13 DR. BERRY: Even as the device is
- 14 evolving over time because of the possibility
- 15 of modeling the relationship between the
- 16 previous versions of the device along the lines
- 17 of what Sharon-Lise was saying, and the current
- 18 version. And you may require a high level of
- 19 evidence through a clinical trial; that
- 20 clinical trial could be very much smaller based
- 21 on the Bayesian model.
- 22 DR. GOODMAN: Thank you, that helps.
- 23 Yes, Dr. Luce?
- 24 DR. LUCE: Just to build on that, and
- 25 I will try to do it in a very concrete way, I

- 1 can picture a setting in which there's temporal
- 2 changes in evidence regarding the device could
- 3 be influenced by three things. One could be
- 4 secular trends of changes in the patient
- 5 population underlying risks. One could be
- 6 changes in the providers that are using the
- 7 device, greater personal or institutional
- 8 experience with the device if there's some
- 9 technical expertise required for its use. And
- 10 the third would be internal changes in the
- 11 device, so they actually change a design
- 12 feature, or a new version of it comes out.
- 13 The advantage of the Bayesian approach
- 14 in quantifying the estimates of the
- 15 effectiveness of the device through all of
- 16 those changes is that the model can
- 17 appropriately and explicitly include that
- 18 structure, you can estimate the effect of each
- 19 of those effects on it, that's one point.
- 20 The second point is you can picture a
- 21 situation in which CMS, for example, may have
- 22 approved coverage for a class of device and a
- 23 new device comes out that in a small trial
- 24 appears to be much more effective, and a
- 25 decision might be to either approve the new

- 1 device and disapprove the previous ones, or
- 2 just approve the new device. The borrowing of
- 3 information across the population of devices
- 4 will help you come up with a better estimate
- 5 for the true effectiveness of the new device
- 6 using the information that you already have on
- 7 how that class of devices performs, and that
- 8 can yield a more accurate reliable decision
- 9 regarding the coverage of the new device.
- 10 DR. C. GOODMAN: Thank you. And so
- 11 the borrowing phenomenon is something, too,
- 12 which several of you have referred to today,
- 13 the borrowing of information. Thank you.
- 14 Dr. Normand.
- 15 DR. NORMAND: Yes. I just want to
- 16 follow up on something that the FDA permitted,
- 17 and Dr. Maisel I think is familiar with this,
- 18 and this was with an OPD, operating performance
- 19 criterion, so that was done without having to
- 20 implement a new clinical trial, but actually
- 21 compared to a lesser number, and what the FDA
- 22 approved was for an independent entity to
- 23 analyze all of the clinical trials, and so that
- 24 was used to borrow some information from some
- 25 patient populations, maybe older diabetics in

- 1 some groups, but they actually used that
- 2 information, permitted that information to be
- 3 used when a new company came in and said I want
- 4 to have a new stent, I don't want to have a
- 5 clinical trial because this is similar to
- 6 another one already approved on the market,
- 7 what number do I need to get. And having all
- 8 that information together from the other
- 9 clinical trials, that helped the FDA to find a
- 10 very fine difference be made, basically a line
- 11 in the sand to say this is what you need to
- 12 move forward. So again, there is a method when
- 13 you're using Bayesian methods in this manner.
- 14 DR. C. GOODMAN: Thank you very much.
- 15 I don't see any questions now from our panel.
- 16 Do we have any further questions, any
- 17 panelist's questions that might plumb the depth
- 18 of our expertise from the front row at this
- 19 point? Okay.
- 20 Dr. Salive, any further questions for
- 21 the experts?
- 22 DR. SALIVE: No.
- 23 DR. C. GOODMAN: I notice that about
- 24 four members of the panel have left to catch
- 25 planes and so only the brave remain, so we will

- 1 have a discussion among ourselves in public
- 2 obviously, but let's talk about each of our
- 3 three main questions, and if we do need in this
- 4 discussion to refer back to our experts or even
- 5 our public commenter, that would be fine.
- 6 Let's return, let's go back to each of the
- 7 questions starting with one, let's discuss it
- 8 as needed, try to answer it, and then move on
- 9 to two, and then move on to three, unless there
- 10 are any objections. Dr. Salive, is that okay
- 11 with you?
- 12 DR. SALIVE: That's great.
- 13 DR. C. GOODMAN: Let's take question
- one, and I'll just sort of rephrase it, excuse
- 15 me, restate it. And it's a two-part question,
- 16 and this is not a voting question, it's sort of
- 17 what your answers are kind of question. And
- 18 so, in assessing the strength of evidence for
- 19 the effectiveness of a medical intervention
- 20 that incorporates Bayesian design or analysis
- 21 compared to a frequentist approach, please
- 22 discuss the following, and (a) is, what are the
- 23 potential greatest strengths of a Bayesian
- 24 approach?
- 25 And so, which of us might want to put

- 1 something on the table that we might have heard
- 2 or not heard so far that stands out about a
- 3 Bayesian versus a frequentist approach? Dr.
- 4 Satya-Murti.
- 5 DR. SATYA-MURTI: Well, foremost is,
- 6 I'm not as scared of the Bayesian approach as I
- 7 was until this meeting, that's an advantage for
- 8 you. But anyway, adaptability strikes me as a
- 9 very useful piece of information and that we
- 10 can quantify the probability with that.
- 11 What does concern me is that the
- 12 intensity of training and the quality of
- 13 Bayesian varies, and how do I know, that's been
- 14 brought up. It's not something that cannot be
- 15 overcome, but that is a concern. And what is
- 16 reassuring is that such ancient questions as
- 17 what are clinically important to the MCID, or
- 18 how much of the benefit is important to make a
- 19 decision, that decision remains, so that
- 20 doesn't disenfranchise the decision-maker.
- 21 DR. C. GOODMAN: So you kind of gave a
- 22 thumbs up on the adaptability and a thumbs down
- 23 on sort of the variability?
- 24 DR. SATYA-MURTI: Well, yeah, the
- 25 complexity of the training requirement and

- 1 quality, so you have to watch out. You need
- 2 built-in expertise or --
- 3 DR. C. GOODMAN: Okay, complexity in
- 4 training is a potential disbenefit. Other
- 5 comments on this? Dr. Dullum perhaps?
- 6 DR. DULLUM: Well, I think the
- 7 strength to me is the adaptability is ongoing
- 8 as we do get more information, and I think
- 9 that's a huge benefit that will improve the
- 10 quality of care and the use of this in guiding
- 11 our management of patients, so I think that's a
- 12 huge benefit.
- 13 I guess I'm now not so concerned about
- 14 the prior because it does, it's kind of an
- 15 ongoing, it does change and if you're wrong
- 16 about your prior, it seems to be of less
- 17 significance once you get conflicting data, and
- 18 that's all good with the strengths of it.
- 19 And in the weakness, I guess, is the
- 20 complexity and still needing to have in-depth
- 21 statisticians, paperers anyway, but if this
- 22 makes it easier for us to understand, I think
- 23 that would also be a benefit, but that seems to
- 24 me to be a downside, is that the knowledge has
- 25 to be so in depth.

- 1 DR. C. GOODMAN: Thank you. Dr. Cox,
- 2 anything about strengths or weaknesses?
- 3 DR. COX: I really don't have anything
- 4 unique to say other than it does seem to me in
- 5 the world that we come into, I know there's
- 6 been a growth of registries, clinical
- 7 registries. One of the strengths that I have
- 8 learned over the past two weeks of being
- 9 introduced into this in depth, and talked about
- 10 today, is the ability to blend different
- 11 sources of data, and this whole source of
- 12 borrowing sources more intelligently and
- 13 treating patients better in that regard.
- 14 And the weaknesses, I think we're
- 15 beating it to death, and others have said it
- 16 quite well, but it's apparent that this is
- 17 complex, and so we have a lot of education and
- 18 I think training coming, to be able to
- 19 understand this better.
- 20 DR. C. GOODMAN: Great, thanks.
- 21 Dr. Maisel.
- 22 DR. MAISEL: I mean, I agree with
- 23 what's been said. I think the transparency as
- 24 we have been using the term with the results
- 25 and the probability is a definite advantage. I

- 1 think the prior knowledge that we have of the
- 2 prior data is also an advantage.
- 3 I do have some concerns, unlike some
- 4 of the speakers, of the need for practicing
- 5 physicians to understand the data. I think
- 6 it's critically important that people who take
- 7 care of patients and read journal articles can
- 8 understand the data that they're looking at and
- 9 understand the statistical analysis that
- 10 underlies it. I don't think that's a problem
- 11 that can't be overcome, and I think CMS or
- 12 others could work hard at putting these types
- 13 of data analyses into context with a coverage
- 14 decision, perhaps have a section that explains
- 15 what the analysis is if a Bayesian approach was
- 16 used, why this analysis was used, and whatever
- 17 else may be of interest to the practicing
- 18 clinician. And I think it could be worked on
- 19 in journals to better explain, and not just in
- 20 statistics journals but journals that
- 21 practicing clinicians use to better inform them
- 22 about how a Bayesian analysis might have been
- 23 applied.
- 24 DR. C. GOODMAN: Great point. So
- 25 you're saying as the message is disseminated,

- 1 accompany it with some translation and
- 2 explanation and so forth.
- 3 DR. MAISEL: Exactly. I don't think
- 4 it's enough to have so-and-so wrote something
- 5 down and followed up with a statistical
- 6 analysis, and we are entitled to understand
- 7 what that means to some degree.
- 8 DR. C. GOODMAN: Dr. Alvir.
- 9 DR. ALVIR: Just the point that if
- 10 you're doing the Bayesian approach correctly,
- 11 then there is all this initial investment that
- 12 you have to do with just laying out all your
- 13 assumptions, which doesn't preclude that from
- 14 happening nor doing that correctly too, you
- 15 actually should be doing all of that also, but
- 16 again, just that requirement, to actually think
- 17 all of these through from the beginning and
- 18 putting all of those assumptions in at the
- 19 front end, at the beginning, is a great
- 20 advantage.
- 21 DR. C. GOODMAN: Thanks. Just to kind
- 22 of recap some of the other points that we've
- 23 heard, strengths anyway, again, the
- 24 transparency that's come up several times, the
- 25 explicitness regarding methods and synthesis

- 1 with regard to strength and quality of design
- 2 and findings, specific definition of utility
- 3 was brought up, and then this other point with
- 4 regard to as our ability to generate data,
- 5 analyze it, come up with tools for mining and
- 6 analyzing data, that will just play to the
- 7 strengths of Bayesian from what we heard.
- 8 The weaknesses, again, we heard about
- 9 having to train people to do this, we talked
- 10 about the multiplicity of model approaches and
- 11 how there's really a spectrum of bad to good,
- 12 and what we're not really good at yet is having
- 13 some sort of approach to assess bad to good,
- 14 and that's something that would help with
- 15 regard to sifting through the methods. The
- 16 paradigm shift is something that's not the
- 17 fault of any particular method, but a paradigm
- 18 would have to shift, and that discontinuity
- 19 brings disquiet to the stakeholders.
- 20 I think that the set we just recited
- 21 back to you is probably not a bad summary of
- 22 the strengths and weaknesses compared to the
- 23 frequentist approach. Did we miss anything
- 24 else that we need to state here?
- 25 Dr. Satya-Murti.

- 1 DR. SATYA-MURTI: Like Bill said, a
- 2 small addition at the end of an article of what
- 3 they see as strengths. Most of the journals
- 4 only pick one or two articles, but this one has
- 5 made it a point to look at strengths and
- 6 weaknesses, so I think some kind of a
- 7 translation of the strengths and weaknesses to
- 8 a major decision would be very good. I think
- 9 that's a good idea.
- 10 DR. C. GOODMAN: Okay. Good. If I'm
- 11 not mistaken, I think we just answered
- 12 Question 1 as part of the record, based on what
- 13 we just summarized.
- 14 Question 2 is a voting question on a
- 15 one to five scale, and Question 2 asks, how
- 16 confident are we that the potential strengths
- 17 of Bayesian approaches outweigh the potential
- 18 liabilities in the design and interpretation of
- 19 a published study, and let's look at the
- 20 designing studies part first. How confident
- 21 are we that the potential strengths of Bayesian
- 22 approaches outweigh the potential liabilities
- 23 basically in designing studies?
- 24 So on that set of one to five where
- 25 liabilities outweigh the strengths is a one and

- 1 a five is strengths outweigh the liabilities,
- 2 can you hold up your cards, please.
- 3 (Members voted and the votes were
- 4 recorded by staff.)
- 5 DR. C. GOODMAN: Thank you. Okay.
- 6 Part two is the same question but instead of
- 7 about designing studies, it's interpreting
- 8 study results. So how confident are we that
- 9 the potential strength of Bayesian approaches
- 10 outweigh the potential liabilities of
- 11 interpreting study results?
- 12 (Members voted and the votes were
- 13 recorded by staff.)
- 14 DR. C. GOODMAN: And before I forget,
- 15 just for the record, the panelists who had to
- 16 leave earlier have supplied their scores.
- 17 MS. ELLIS: Correct.
- 18 DR. C. GOODMAN: Those are in the
- 19 hopper, then.
- 20 Question 3 now has to do with, and we
- 21 just finished discussing that a little while
- 22 ago, and this is a two-part once again. And
- 23 the question goes, how confident are we that
- 24 CMS should incorporate evidence that uses
- 25 Bayesian approaches in technology assessments

- 1 in, A, clinical trials, and B, technology
- 2 assessments, submitted for coverage decisions?
- 3 Okay. CMS is going to get the stuff,
- 4 evidence, submitted for things that may need
- 5 national coverage determinations. And in the
- 6 role of, in the instance of clinical trials,
- 7 how confident are we that CMS ought to utilize
- 8 Bayesian methods for clinical trials? Dr.
- 9 Satya-Murti.
- 10 DR. SATYA-MURTI: Very briefly. So
- 11 there is an assumption there that CMS has been
- 12 involved in the clinical trial when the study
- 13 was already designed?
- 14 DR. C. GOODMAN: I would say not
- 15 necessarily so. Dr. Salive, comment? I
- 16 wouldn't assume that.
- 17 DR. SALIVE: I would not assume that.
- 18 DR. SATYA-MURTI: That changes the
- 19 tenor.
- 20 DR. C. GOODMAN: At least for you,
- 21 Dr. Satya-Murti. Yes, Dr. Dullum?
- 22 DR. DULLUM: Can I clarify it too?
- 23 They have to use Bayesian statistics or
- 24 analysis to even look at it, or are you talking
- 25 about applying this to a study that's already

- 1 been done by a frequentist?
- 2 DR. C. GOODMAN: My reading of it
- 3 would be that a sponsor or other advocate might
- 4 seek a coverage decision at this level, CMS,
- 5 and would supply some body of evidence, and
- 6 said body of evidence would include that of
- 7 clinical trials, and those clinical trials
- 8 might have used Bayesian approaches. So having
- 9 been presented that evidence, how confident are
- 10 you that CMS ought to incorporate it in making
- 11 their decision.
- 12 DR. SATYA-MURTI: We don't necessarily
- 13 know how those trials were designed yet?
- 14 DR. C. GOODMAN: We don't, but
- 15 presumably what we know at CMS, and sometimes
- 16 with help from an evidence-based practice
- 17 center, will appraise the evidence presented to
- 18 it.
- 19 DR. SALIVE: I don't think we need to
- 20 make this more complicated than the question
- 21 is. It seems like a fairly straightforward and
- 22 simple question to me, should we have CMS
- 23 incorporate Bayesian analyses using their
- 24 judgment in asking the proper questions about
- 25 whether it's used in the right way and

- 1 incorporated the proper way. I think we can
- 2 rely on their judgment to do it properly.
- 3 DR. C. GOODMAN: They could appraise
- 4 it. Okay. Where one is CMS ought to
- 5 discourage this sort of thing, and five is they
- 6 ought to encourage, on a one to five scale.
- 7 (Members voted and the votes were
- 8 recorded by staff.)
- 9 DR. C. GOODMAN: So we're not quite --
- 10 excuse me. Yes, the technology assessment
- 11 part, and remember, there is a distinction
- 12 between clinical trials and technology
- 13 assessments, and we've got our cards up.
- 14 (Members voted and the votes were
- 15 recorded by staff.)
- 16 DR. C. GOODMAN: Before some final
- 17 comments, Dr. Salive, is there anything that
- 18 you would have wished we had covered that we
- 19 still might address before we have final
- 20 comments and then adjourn?
- 21 DR. SALIVE: No.
- 22 DR. C. GOODMAN: Good. Before we do
- 23 adjourn, and I just want to give credit in due
- 24 time to the brave ones who survived today and
- are still on the panel.

- 1 We have gone over quite a bit in
- 2 detail as far as methodologies for Bayesian
- 3 versus frequentist in terms of primary data
- 4 gathering, secondary data gathering, what are
- 5 some indications for the Agency. Since we
- 6 still have the floor insofar as it applies to
- 7 advice to the Agency, do you have any
- 8 additional insights or advice to the Agency
- 9 about incorporating Bayesian methods in its
- 10 deliberations regarding evidence requirements
- 11 for coverage or how the Agency might work with
- 12 intervention sponsors that might approach it
- 13 with regard to coverage? Dr. Maisel?
- 14 DR. MAISEL: I'm not sure what the
- 15 normal practice is for CMS, but I do think it
- 16 would be valuable to put in writing your
- 17 approach to Bayesian analyses, and so if you're
- 18 going to permit people to come in with analyses
- 19 such as this, you might outline the things
- 20 you're going to judge the analysis on, such as
- 21 a prespecified amount of decisions before the
- 22 trial is started, that the results should be
- 23 well documented in a timely fashion before the
- 24 trial is completed, those are some things that
- 25 I think are critical in getting quality

- 1 analyses.
- 2 DR. C. GOODMAN: Great comment.
- 3 Dr. Cox.
- 4 DR. COX: Just following up on that,
- 5 these documents also help those of us in the
- 6 community or in research who understand, it
- 7 gives us the kind of over the bow explanation
- 8 that you need to understand the analysis, so it
- 9 helps press the paradigm.
- 10 DR. C. GOODMAN: Great, thank you.
- 11 Dr. Satya-Murti.
- 12 DR. SATYA-MURTI: There are
- 13 commonalities between the Bayesian and the
- 14 frequentist approach, and that is that the
- 15 final outcome of the study still doesn't
- 16 change, so in that guidance it will be good
- 17 also to stress what is common, so we don't
- 18 necessarily think of this as too adversarial.
- 19 DR. C. GOODMAN: Thank you. My final
- 20 comment for you is this. This is a great time
- 21 to be looking at Bayesian methods, whether you
- 22 look them or not, looking at Bayesian methods
- 23 and their sister approach, adaptive trial
- 24 designs and others, this is an important time
- 25 to look at these. There are several things

- 1 going on in our current environment that are
- 2 affecting current decision-making here in the
- 3 U.S., whether public payers or private,
- 4 internationally, others around the world, and
- 5 the various things going on with a heightened
- 6 interest in a bunch of abbreviations and
- 7 acronyms, health technology assessment, HTA,
- 8 EBM, evidence-based medicine, as we've heard
- 9 here today, CED, coverage with evidence
- 10 development, comparative effectiveness
- 11 research, heterogeneity of treatment effects in
- 12 other subpopulations, the role of personalized
- 13 medicine, and the importance of tracking
- 14 innovation and accounting for how it's changing
- 15 effects on patient health.
- 16 So those half dozen things that I just
- 17 listed all have the potential to benefit from
- 18 the insights gained by things like Bayesian
- 19 methods, so I applaud the Agency for looking at
- 20 this very important issue. It's timely, it is
- 21 very important that you are looking at it and
- 22 considering it.
- 23 I think that there is an extraordinary
- 24 wealth of expertise, not only represented by
- 25 the experts from whom we've heard today, but in

- 1 the United States and around the world, so I
- 2 think it's a very good step that CMS is looking
- 3 at seriously in this current environment, as
- 4 we're looking more carefully at how we assess
- 5 interventions for patients' health in the
- 6 United States.
- 7 So hats off to the Agency. I want to
- 8 thank, including those who aren't here,
- 9 Dr. Satya-Murti, Dr. Axelrod, Dr. Cox,
- 10 Dr. Dullum, Dr. Grant, Dr. Hlatky, Dr. Maisel,
- 11 Dr. Prager, Dr. Alvir. I want to thank our
- 12 guess speakers who have been very helpful,
- 13 patient and informative; that would include Don
- 14 Berry, Steve Goodman, Roger Lewis, Sharon-Lise
- 15 Normand and Gillian Sanders. We are very
- 16 grateful for the expert guidance and good
- 17 logistical planning from Dr. Marcel Salive,
- 18 Maria Ellis, and the rest of the staff here at
- 19 CMS. With that, Dr. Salive?
- 20 DR. SALIVE: I want to thank all
- 21 those same people plus Rosemarie Hakim, plus
- 22 Steve Phurrough for thinking about this idea
- 23 and then leaving, not necessarily in that
- 24 order, but thanks to everyone, and safe travels
- 25 home.

1 DR. C. GOODMAN: We're adjourned, thank you. (Whereupon, the meeting adjourned at 3:58 p.m.)