The evolution of IMRT technology has demonstrated improved clinical outcomes to the point that many disease sites need to be considered as potentially appropriate for this therapy. Professional society and national clinical guidelines create the foundation for this LCD’s limited coverage related to evidence-based RT approaches.
Sources for this coverage LCD, such as American Society for Therapeutic Radiology and Oncology (ASTRO) and National Comprehensive Cancer Network® (NCCN®), have compiled many peer-reviewed publications which report clinical outcomes for these therapies related to cancer type and disease site. These publications have thus informed those credible specialty organization model policies and guidelines. In turn, these model policies and guidelines have all been reviewed for purposes of creating a foundation for this coverage LCD.
The ASTRO Model Policies for IMRT, SRS, and SBRT1,2,3 address coverage and limitations based on a review of available literature.
IMRT Evidence Review
Anal Cancer
American College of Radiology (ACR®) Appropriateness Criteria states that in terms of the dosage of ionizing radiation, IMRT can reduce the dose to normal structures and is associated with decreased acute toxicity when compared to CRT for anal carcinoma. They recommend IMRT use as “usually appropriate” if given outside of a protocol setting and note that further evaluations are underway.4
NCCN® guidelines for the treatment of anal carcinoma state that IMRT is preferred over 3D-CRT, citing benefits of reduced toxicity while maintaining local control (LC) in multiple studies (2021).5
Breast Cancer
Jagsi et al6 conducted a randomized controlled trial (RCT) comparing IMRT and deep inspiration breath hold (DIBH) vs standard, free-breathing, forward-planned, 3D-CRT in individuals with left-sided, node-positive breast cancer in whom the internal mammary nodal region was targeted. The purpose of the study was to determine whether using these technologies reduces cardiac or pulmonary toxicity during breast RT. Endpoints included dosimetric parameters and changes in pulmonary and cardiac perfusion and function, measured by single photon emission computed tomography (SPECT) scans and pulmonary function testing performed at baseline and 1 year post treatment. Of 62 patients randomized, 54 who completed all follow-up procedures were analyzed. Mean doses to the ipsilateral lung, left ventricle, whole heart, and left anterior descending coronary artery were lower with IMRT-DIBH; the percent of left ventricle receiving ≥5 Gy averaged 15.8% with standard RT and 5.6% with IMRT-DIBH. SPECT revealed no differences in perfusion defects in the left anterior descending coronary artery territory, the study's primary endpoint, but did reveal statistically significant differences (P=0.02) in left ventricular ejection fraction (LVEF), a secondary endpoint. No differences were found for lung perfusion or function. The authors concluded that this study suggests a potential benefit in terms of preservation of cardiac ejection fraction among patients with left-sided disease in whom the internal mammary region was targeted. Future studies are essential, including comparative evaluation of outcomes and the impact of advances in radiation treatment planning and delivery, in order to inform and shape clinical practice and policy.
NCCN® guidelines for breast cancer state that greater target dose homogeneity and sparing of normal tissues can be accomplished using compensators such as wedges, forward planning using segments and IMRT. Respiratory control techniques and prone positioning may be used to try to further reduce dose to adjacent normal tissues, particularly the heart and lungs (2021).7
Central Nervous System (CNS) Tumors
In its CNS Cancers guideline, NCCN® states that lower doses of targeted conformal RT (including 3D-CRT and IMRT) are recommended for treatment of low-grade anaplastic gliomas, infiltrative astrocytomas, oligodendrogliomas, glioblastomas and meningiomas. Higher doses of RT are found to be no more effective than lower doses. For medulloblastomas, the guidelines state that for patients at average risk, a regimen of IMRT or proton craniospinal irradiation (CSI) alone or with chemotherapy are both viable treatment options (2021).8
Cervical Cancer
Tsuchida et al9 conducted a retrospective cohort analysis to compare clinical outcomes and toxicity incidence among patients diagnosed with cervical cancer that underwent radical hysterectomy and were treated with either 3D-CRT or IMRT. Concurrent chemotherapy was not given during the study. Outcomes of interest included gastrointestinal (GI), genitourinary (GU) and hematologic (HT) toxicities, and overall survival (OS), disease-free survival (DFS) and loco-regional control (LRC). A total of 73 patients (33 received 3D-CRT and 40 received IMRT) were included in the final analysis. The median follow-up period differed between the group with 82 months in the 3D-CRT group and 50 months in the IMRT group (P<0.001). After 4 years, there was no difference OS or DFS between the groups. Loco-regional recurrence was more frequent in patients with vaginal invasion reported in the post-operative pathological report (17% vs 2.3%; P=0.033). GI obstruction was more frequent in the group that received 3D-CRT vs IMRT (27% vs 7.5%; P=0.026) and surgical intervention for the obstruction was higher in the 3D-CRT group as well (18% vs 0%; P=0.005). There was no significant difference in acute GI, GU or HT toxicities; however, in the IMRT group, there were fewer late toxicities, GI ≥2 (P=0.026) and GU ≥G2 (P=0.038). The authors concluded that their results show that IMRT could reduce the incidence of late severe GI obstruction and that additional studies are warranted.
Lin et al10 conducted a meta-analysis to compare the efficacies and toxicities of IMRT with 3D-CRT or 2D-RT for definitive treatment of cervical cancer. A search for relevant studies was conducted using PubMed®, the Cochrane Library, Web of Science™, and Elsevier. Outcomes of interest included OS, DFS, and acute and chronic toxicities. The literature review yielded 2,808 publications and after screening and review, a total of 6 articles, with 1,008 participants (350 IMRT and 658 CRT) were included in the final analysis. Three-year OS and 3-year DFS revealed no significant differences between IMRT and 3D-CRT or 2D-RT (3-year OS: OR, 2.41, CI, 0.62 to 9.39, p=0.21; 3-year DFS: OR, 1.44, 95% CI, 0.69 to 3.01, p=0.33). The incidence of acute GI toxicity and GU toxicity in patients who received IMRT was significantly lower than that in the control group (GI: Grade 2: OR, 0.5, 95% CI, 0.28 to 0.89, p=0.02; Grade 3 or higher: OR, 0.55, 95% CI, 0.32 to 0.95, p=0.03; GU: Grade 2: OR, 0.41, 95% CI, 0.2 to 0.84, p=0.01; Grade 3 or higher: OR, 0.31, 95% CI, 0.14 to 0.67, p=0.003). Furthermore, patients who received IMRT experienced fewer incidences of chronic GU toxicity than patients in the control group (Grade 3: OR, 0.09, 95% CI, 0.01 to 0.67, p=0.02). The authors concluded that IMRT and CRT demonstrated equivalent efficacy in terms of 3-year OS and DFS, and that IMRT significantly reduced acute GI and GU toxicities as well as chronic GU toxicity in patients with cervical cancer.
Mell et al11 conducted an international, multicenter, single-arm phase II clinical trial (NCT01554397, still ongoing) to evaluate the incidence of HT and GI toxicities in patients with stage IB-IVA, biopsy-proven invasive carcinoma of the cervix among patients who were treated with IMRT. All 83 patients received daily IMRT concurrently with weekly cisplatin for 6 weeks, with an intracavitary brachytherapy boost given at completion of the chemoradiation regimen. Additionally, the researchers conducted a subgroup analysis on whether the use of PET-based image-guided IMRT (IG-IMRT) had an influence on the development of neutropenia compared to standard IMRT. Post-simple hysterectomy patients were included, initiating the regimen within 8 weeks of surgery. Individuals who underwent radical hysterectomy with extensive nodal involvement were excluded. Primary outcome measures were either acute grade ≥3 neutropenia or clinically significant GI toxicity occurring within 30 days of regimen completion. The median follow-up was 26 months. The incidence of any primary event was 26.5%, significantly less than the 40% hypothesized in historical data. The incidence of grade ≥3 neutropenia and clinically significant GI toxicity was 19.3% and 12.0%, respectively. In the analysis on neutropenia, those treated with IG-IMRT (n=35) had a significantly lower incidence (8.6%) compared with the 48 patients who received standard IMRT (27.1%). The differences in the incidence of grade ≥3 leukopenia and any grade ≥3 HT toxicity were considered insignificant between the 2 types of IMRT delivery. The authors concluded that IMRT, compared with standard therapy, reduces both acute HT events and GI toxicity and that PET-based IG-IMRT reduces the incidence of acute neutropenia compared with historical data.
In a 2020 ASTRO Cervical Cancer Guideline, Chino et al recommended IMRT for women with cervical cancer treated with postoperative RT with or without chemotherapy to decrease acute and chronic toxicity (strength of recommendation: strong). For women with cervical cancer treated with definitive RT with or without chemotherapy, IMRT is conditionally recommended to decrease acute and chronic toxicity.12
NCCN® guidelines for cervical cancer13 state that IMRT and similar highly conformal methods of dose delivery may be helpful in minimizing the dose to the bowel and other critical structures in the post-hysterectomy setting, in treating the para-aortic nodes when necessary, and when high doses are required to treat gross regional lymph nodes disease. IMRT should not be used as a routine alternative to brachytherapy for treatment of central disease in patients with an intact cervix. Very careful attention to detail and reproducibility is required for proper delivery (2021).
Endometrial Cancer
Klopp et al14 conducted a multicenter, phase III RCT (NCT01672892, still ongoing) to evaluate patient reported acute toxicity and QOL in patients with invasive cervical or endometrial cancer and treated with standard 4 field pelvic RT or pelvic IMRT. The primary end point, change in acute GI toxicity, was measured at baseline and end of RT (5 weeks) using the bowel domain of the Expanded Prostate Cancer Index Composite (EPIC). The secondary endpoints, measured at the same points in time, were change in GU toxicity and the extent to which it interfered with daily activities. To measure GU toxicity, the urinary domain of the EPIC was used and to determine the extent to which GU toxicity impacted daily activities, the Patient Reported Outcomes–Common Terminology Criteria for Adverse Events (PRO-CTCAE), Functional Assessment of Cancer Therapy-General (FACT-Cx), Functional Assessment of Cancer Therapy - General (FACT-G) and Trial Outcome Index were used. A total of 278 patients were included in the final analysis, 149 received standard RT and 129 received IMRT. Compared to baseline, the standard RT arm had larger mean EPIC bowel and urinary score declines compared with the IMRT arm (-26.3 vs -18.6; P=0.05 and -10.4 vs -5.3, P=0.03, respectively). The FACT-Cx mean scores showed a decline of 4.9 points in the standard RT group vs 2.7 points in the IMRT group (P=0.015). There was no difference between the arms in the FACT-G subscale or Trial Outcome Index scores. In addition, the PRO-CTCAE results showed that at the end of therapy, more patients in the standard RT arm experienced diarrhea frequently or almost constantly compared with the IMRT arm (51.9% vs 33.7%, respectively; P=0.01) and were taking antidiarrheal medications 4 or more times daily (20.4% vs 7.8%, respectively; P=0.04). The authors concluded based on the patient’s perspective, pelvic IMRT was associated with significantly less acute GI and urinary toxicity.
Wahl et al15 developed consensus guidelines on adjuvant radiotherapy for early-stage endometrial cancer from a multidisciplinary expert panel convened by the ACR®. Per the ACR® appropriateness criteria, IMRT has been shown to reduce dose to critical structures in dosimetric studies, and retrospective reviews of IMRT for early-stage endometrial cancer have shown excellent LC rates, with low GI toxicity rates. The ACR® appropriateness criteria for advanced stage endometrial cancer states IMRT may further improve treatment of areas at risk for tumor recurrence while sparing adjacent normal tissues. The authors note that several studies of IMRT for gynecologic malignancies showed that, compared with external beam pelvic RT, IMRT improved target coverage, reduced the volume of normal tissues receiving the prescription dose, and that the reduction in dose resulted in a decrease in both acute and chronic GI side effects compared with historic controls.
Esophageal Cancer
Xu et al16 performed a systematic review and meta-analysis to compare IMRT and 3D-CRT in the treatment of esophageal cancer (EC) via analysis of dose-volume histograms and survival/toxicity outcomes. Overall, 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lungs and hearts, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between the 2 radiotherapy techniques.
NCCN® guidelines for esophageal and esophagogastric junction cancers17 state that IMRT is appropriate in clinical settings where reduction in dose to OAR (e.g., heart and lungs) is required that cannot be achieved by 3D techniques (2021).
Head and Neck Cancer
Gupta et al18 compared long-term disease-related outcomes and late radiation morbidity between IMRT and 3D-CRT in head and neck squamous cell carcinoma (HNSCC) in a prospective RCT. The primary endpoint was the incidence of physician rated acute salivary gland toxicity (≥grade 2). Secondary endpoints included other acute toxicity (mucositis, dermatitis, dysphagia), late radiation morbidity, patterns of failure, loco-regional disease status, and OS. Patients (n=60) who were previously untreated and had early to moderately advanced non-metastatic squamous carcinoma of the oropharynx, larynx, or hypopharynx planned for comprehensive irradiation of primary site and bilateral neck nodes were randomly assigned to either IMRT or 3D-CRT. Treatment consisted of 6MV photons to a total dose of 70 Gy/35 fractions over 7 weeks (3D-CRT) or 66 Gy/30 fractions over 6 weeks (IMRT). At a median follow-up of 140 months for surviving patients, 10-year Kaplan-Meier estimates of locoregional control (LRC), PFS, and OS with 95% confidence interval were 73.6%, 45.2%, and 50.3% respectively. There were no significant differences in 10-year disease-related outcomes between 3D-CRT and IMRT for LRC 79.2% vs 68.7%; PFS 41.3% vs 48.6%; or OS 44.9% vs 55.0%. Significantly lesser proportion of patients in the IMRT arm experienced ≥ grade 2 late xerostomia and subcutaneous fibrosis at all time-points. At longer follow-up, fewer patients remained evaluable for late radiation toxicity reducing statistical power and precision. The authors concluded IMRT provides sustained clinically meaningful benefit compared to 3D-CRT in reducing the late morbidity of radiation without compromising disease-related outcomes in long-term survivors of non-nasopharyngeal HNSCC. Limitations include lack of blinding to treatment arm and small study size with even much lesser numbers on long-term follow-up (between 5 and 10 years).
In 2018, the International Lymphoma Radiation Oncology Group conducted a literature review and developed guidelines covering staging, work-up, and RT management of patients with plasma cell neoplasms. With a localized plasmacytoma in the bone or in extramedullary (extraosseous) soft tissues, definitive RT is the standard treatment. It provides long-term LC in solitary bone plasmacytomas and is potentially curative in the extramedullary cases. On the basis of comparative treatment planning (comparison dose-volume histogram) and determination of the priority of the OARs to protect, the radiation oncology team should make a clinical judgment as to which treatment technique to use. In some situations, more conformal techniques such as IMRT, helical-IMRT, or VMAT approaches may offer significantly better sparing of critical normal structures, usually at the cost of a larger total volume of normal tissue irradiated, but with a lower dose.19
Nutting et al20 assessed whether parotid-sparing IMRT reduced the incidence of severe xerostomia, a common late side effect of RT to the head and neck. Ninety-four patients with pharyngeal squamous cell carcinoma were randomly assigned to receive IMRT (n=47) or CRT (n=47). The primary endpoint was the proportion of patients with grade 2 or worse xerostomia at 12 months. Median follow-up was 44 months. Six patients from each group died before 12 months; 7 patients from the CRT and 2 from the IMRT group were not assessed at 12 months. At 12 months, xerostomia side effects were reported in 73 of 82 patients. Grade 2 or worse xerostomia at 12 months was significantly lower in the IMRT group (38%) than in the CRT group (74%). The only recorded acute AE of grade 2 or worse that differed significantly between the treatment groups was fatigue, which was more prevalent in the IMRT group. At 24 months, grade 2 or worse xerostomia was significantly less common with IMRT than with CRT. At 12 and 24 months, significant benefits were seen in recovery of saliva secretion with IMRT compared with CRT, as were clinically significant improvements in dry-mouth-specific and global QOL scores. At 24 months, no significant differences were seen between randomized groups in non-xerostomia late toxicities, LRC or OS. The authors concluded that sparing the parotid glands with IMRT significantly reduces the incidence of xerostomia and leads to recovery of saliva secretion and improvements in associated QOL.
NCCN® guidelines for head and neck cancers state that IMRT is appropriate and may offer clinically relevant advantages to spare important OARs, such as brain, brain stem, cochlea, semicircular canals, optic chiasm, cranial nerves, retina, lacrimal glands, cornea, spinal cord, brachial plexus, mucosa, salivary glands, bone, pharyngeal constrictors, larynx, esophagus, and decrease the risk for late, normal tissue damage and toxicity while still achieving the primary goal of local tumor control (2022).21
Hippocampal-Avoidance Whole Brain Radiation Therapy (HA-WBRT)
Brown et al22 conducted a phase III trial to determine if hippocampal avoidance using IMRT during whole-brain radiotherapy (WBRT) preserves cognition. Between July 2015 and March 2018, 518 patients were randomly assigned to 2 groups, 1 group with brain metastases to HA-WBRT plus memantine, and 1 group with WBRT plus memantine. Time to cognitive function failure, defined as decline using the reliable change index on at least 1 of the cognitive tests was the primary endpoint. OS, intracranial PFS, toxicity, and patient-reported symptom burden, were secondary endpoints. Median follow-up for alive patients was 7.9 months. Risk of cognitive failure was significantly lower after HA-WBRT plus memantine vs WBRT plus memantine (adjusted hazard ratio, 0.74; 95% CI, 0.58 to 0.95; P=0.02). This difference was attributable to less deterioration in executive function at 4 months, and learning and memory at 6 months. Treatment arms did not differ significantly in OS, intracranial PFS, or toxicity. At 6 months, using all data, patients who received HA-WBRT plus memantine reported less fatigue (P=0.04), less difficulty with remembering things (P=0.01), and less difficulty with speaking (P=0.049) and using imputed data, less interference of neurologic symptoms in daily activities (P=0.008) and fewer cognitive symptoms (P=0.01). The authors concluded HA-WBRT plus memantine effectively spares the hippocampal neuroregenerative niche to better preserve cognitive function and patient-reported symptoms and should be considered a standard of care for patients with good performance status who plan to receive WBRT for brain metastases with no metastases in the HA region. Additionally, no differences were observed in intracranial PFS, toxicity, or OS. Limitations include lack of blinding.
The American Society of Clinical Oncology (ASCO)/Society for NeuroOncology (SNO)/ASTRO guidelines for patients with brain metastases from solid tumors recommends memantine and hippocampal avoidance should be offered to patients who receive WBRT, and have no hippocampal lesions, and 4 months or more expected survival. Patients with asymptomatic brain metastases with either KPS ≤ 50 or KPS < 70 with systemic therapy options do not derive benefit from RT.23
NCCN® guidelines for CNS cancers state that HA-WBRT (plus memantine) 30 Gy in 10 fractions is preferred for patients with a better prognosis (≥4) and no metastases within 5 mm of the hippocampi (2021).8
Mediastinal Tumors
Besson et al24 evaluated toxicities secondary to different RT modalities and the evolution of those modalities in the treatment of mediastinal tumors associated with Hodgkin’s (HL) and non-Hodgkin's lymphoma (NHL). Between 2003 and 2015, 173 individuals with Stage I-III nodal lymphoma were treated at a single institution with either 3D-CRT or IMRT as part of a chemoradiotherapy protocol (HL=64, NHL=5). Of interest, between 2003 and 2006, 16 patients were treated by 3D-CRT vs zero patients treated by IMRT. Between 2007-2009, 16 patients were treated by 3D-CRT vs 1 patient receiving IMRT. Between 2010- 2015, 19 patients were treated by IMRT, and zero received 3D-CRT. All patients were followed for 5 years alternately by a radiation oncologist or a hematologist. Results demonstrated LC at 100% in both groups and acute (grade 1 or 2) toxicities of 55% and 71.4% with IMRT vs 3D-CRT, respectively. Authors concluded that the use of IMRT as an improved RT technique over 3D-CRT has promoted the evolution of improved acute and late outcomes for HL and NHL patients. Longer follow-up is necessary to evaluate very late toxicities, as this study only evaluated acute (grade 1 and 2) toxicities.
NCCN® guidelines for lymphomas state that advanced RT technologies, such as IMRT, breath hold or respiratory gating, and/or IGRT or Proton Beam Therapy (PBT), may offer significant and clinically relevant advantages in specific instances to spare OAR and decrease the risk for late, normal tissue damage while still achieving the primary goal of local tumor control. Randomized studies to test these concepts are unlikely to be done since these techniques are designed to decrease late effects which take 10+ years to evolve. Therefore, the guidelines recommend that RT delivery techniques that are found to best reduce the doses to the OAR in a clinically meaningful way without compromising target coverage should be considered in these patients, who are likely to enjoy long life expectancies following treatment (2022).25
NCCN® guidelines for thymomas and thymic carcinomas state that RT should be given by 3D conformal technique to reduce surrounding normal tissue damage (e.g., heart, lungs, esophagus, spinal cord). The guideline states that since these patients are younger and mostly long-term survivors, the mean total dose to the heart should be as low as reasonably achievable to potentially maximize survival. IMRT is preferred over 3D-CRT and may further improve the dose distribution and decrease the dose to the normal tissue as indicated (2022).26
Non-Small Cell Lung Cancers (NSCLC), Stage III
NCCN® guidelines for NSCLC state that in a prospective trial of definitive/consolidative chemo/RT for patients with stage III NSCLC (RTOG 0617), IMRT was associated with a nearly 60% decrease in high-grade radiation pneumonitis as well as similar survival and tumor control outcomes despite a higher proportion of stage IIIB and larger treatment volumes compared to 3D-CRT; as such, IMRT is preferred over 3D-CRT in this setting (2022).27
Pancreatic Cancer
Bittner et al28 conducted a systematic review to determine whether toxicities can be reduced by using IMRT rather than 3D-CRT in patients with pancreatic cancer, and to compare OS and PFS between the 2 techniques. A search for relevant studies was conducted using PubMed®/Medline. Outcomes of interest included details regarding the therapy given, acute and late toxicities, and patient survival (OS and PFS). A total of 13 IMRT and 7 3D-CRT studies were included in the final analysis. For acute toxicities, nausea and vomiting ≥ grade 3 were 13.4% (109/747 patients) vs 7.8% (35/446 patients) for 3D-CRT and IMRT, respectively (p<0.001). Late toxicities were predominantly GI: toxicities ≥ grade 3 were 10.6% (22/207) and 5.0% (19/381), for 3D-CRT and IMRT, respectively (p=0.017). However, those were mainly attributed to the group of patients with GI bleeding/duodenal ulcer. There were no differences in HT, OS and PFS between the 2 techniques. The authors concluded that when comparing 3D-CRT and IMRT in the treatment of pancreatic cancer, there is no significant differences in OS and PFS, however; treatment-related toxicities (i.e., nausea, vomiting, diarrhea and late GI toxicity) are significantly reduced with IMRT.
ASTRO’s 2019 clinical practice guideline states that modulated treatment techniques such as IMRT and VMAT for planning and delivery of both conventionally fractionated and hypofractionated RT are recommended for treatment of localized pancreatic cancer (Strength of recommendation: Strong).29
NCCN® guidelines for pancreatic adenocarcinoma state that IMRT with breath hold/gating techniques can result in improved PTV coverage with decreased dose to OAR. IMRT is increasingly being applied in treatment of locally advanced pancreatic adenocarcinoma and in the adjuvant setting with the aim of increasing radiation dose to the gross tumor while minimizing toxicity to surrounding tissues. There is no clear consensus on appropriate maximum dose of radiation when IMRT is used (2021).30
Prostate Cancer
Viani et al31 compared IMRT with 3D-CRT for the treatment of prostate cancer through a randomized, phase III clinical trial (NCT02257827). In total, 215 patients were enrolled in the study, randomly selected into the IMRT group (n=109) or the 3D-CRT group (n=106). Primary outcome measures included early and late GU and GI toxicities as well as freedom from biochemical failure, determined through use of Phoenix criteria (PSA + 2 ng/mLnadir). The median follow-up period was 3 years. The 3D-CRT arm reported incidences of grade ≥ 2 acute GU and GI toxicities at 27% and 24%, respectively, compared with 9% and 7%, respectively, in the IMRT group. In assessing the rate of grade ≥2 late GU and GI toxicities spanning the entire follow-up period, the 3D-CRT group reported 12.3% and 21%, respectively, compared to the IMRT arm which reported 3.7% and 6.4%, respectively. The 5-year rate of freedom from biochemical failure was 95.4% in the IMRT arm and 94.3% in the 3D-CRT arm (P=0.678). The authors concluded that the use of IMRT resulted in significantly less acute and late toxicities than 3D-CRT when used in the treatment of prostate cancer.
NCCN® guidelines state that highly CRT, such as IMRT, should be used to treat prostate cancer. IMRT significantly reduces the risk of GI toxicities and rates of salvage therapy compared to 3D-CRT in some but not all older studies. Moderately hypofractionated image guided IMRT regimens have been tested in randomized trials with similar efficacy and toxicity to conventionally fractionated IMRT in some studies, and they can be considered as an alternative to conventionally fractionated regimens when clinically indicated (2022).32
At the time of this evidence review, no evidence was identified in the clinical literature supporting the combined use of IMRT and proton beam RT in a single treatment plan.
SRS Evidence Review
SRS is limited to 1 to 5 fractions delivered to intracranial targets and selected tumors around the base of the skull. According to the Skeie33 article, nearly all glioblastoma multiforme (GBM) patients suffer a relapse after the initial treatment. In this study, 77 consecutive patients with recurrent GBM treated with Gamma Knife® surgery (GKS), reoperation, or both were reviewed. Thirty-two patients were treated with GKS, 26 patients underwent reoperation, and 19 patients were treated with both. Patients treated with GKS at the time of tumor progression had significantly better local tumor control and significantly longer survival than patients not treated with GKS.
Three articles evaluated SRS for brain metastases. Yomo et al34 noted that patients treated with SRS for limited brain metastases from small cell lung cancer survived slightly more than 8 months following SRS. Although SRS provided durable local tumor control, repeat treatment was required in nearly half of the patients to control distant brain metastases. Soike et al35 conducted a review of nonrandomized prospective and retrospective data supporting the use of SRS in patients with 4 or more brain metastases. The absolute number of brain metastases was not as prognostic as other factors such as the KPS, age, histology of the tumors, and presence of mutations that could be targeted. WBRT has been the standard treatment for brain metastases. However, new technology has allowed use of SRS to treat 4 or more brain metastases, but there has been a lack of randomized evidence supporting its use. The authors concluded the role of SRS in brain metastases should be carefully considered on an individual basis. More multi-institutional trials were recommended to determine whether SRS is the most appropriate treatment in such patients. Badiyan et al36 noted that brain metastases are the most common intracranial malignancy. Surgery and SRS are both commonly used to treat patients with brain metastases. Surgery is preferred for patients with a single brain metastasis. Surgery also has the advantage of treating metastases greater than 4 cm and those that abut critical structures. SRS has the advantage of being noninvasive, with the ability to treat multiple tumors simultaneously. Some patients receive both treatments. SRS is also sometimes used post operatively to treat the residual tumor cavity to decrease the risk of local recurrence. Although the 2 treatments have never been compared in a randomized trial, data point to potentially poorer LC with surgery alone. The ASTRO SRS Model Policy does recommend coverage for metastatic brain lesions, independent of the number of such lesions assuming other positive clinical factors exist such as decent performance status and stable systemic disease.2
A systematic review and meta-analysis was performed to evaluate the safety and efficacy of fractionated stereotactic radiotherapy (FSRT) and SRS for pituitary adenomas.37 The authors concluded SRS and FSRT have comparable clinical outcomes and are in agreement with current reviews in the literature. FSRT and SRS have similar efficacy and safety profiles. In the Przybylowski38 study, a retrospective review was performed regarding SRS for acoustic neuromas. It was concluded that SRS affords effective tumor control for acoustic neuromas with an acceptable rate of hearing preservation. Koos grade IV tumors were significantly less likely to respond to SRS than grades I to III tumors and should be strongly considered for surgical resection when possible. Two studies evaluated SRS for intracranial AVMs. Gupta et al39 conducted a retrospective review of 114 patients with intracranial AVMs treated with the CyberKnife® device. Interdisciplinary treatment regimens that may involve endovascular embolization, surgical resection and SRS are increasingly being used. The multimodal treatment approach is believed to ensure obliteration of the AVM while minimizing AVM rupture. This article presented single institution data on a series of patients whose AVMs proved resistant to radiosurgery with the CyberKnife® device over a 10-year period. The average follow-up was over 7 years. The incidence of delayed hemorrhage after CyberKnife® treatment was 11 percent. Functional and clinical outcomes after radiosurgery remained the same in most cases. Two thirds of these AVMs were eventually completely obliterated at last imaging follow-up. Even AVMs persisting for over 4 years following CyberKnife® radiosurgery might eventually obliterate, with or without adjunctive endovascular and/or radiosurgical treatment. In the Ding40 article, 11 patients' diagnoses with large localized cerebral AVMs were selected for multi-stage robotic SRS. The CyberKnife® and MultiPlan® radiation delivery and treatment planning systems were concluded to be practical for multi-stage SRS of large cerebral AVMs. The ASTRO SRS Model Policy does recommend coverage for AVMs and cavernous malformations; the evidence for SRS, particularly as part of a multidisciplinary approach to assure success appears to be reasonable and necessary.2
SBRT Evidence Review
The ASTRO Model Policy for SBRT3 addresses coverage and limitations based on a review of available literature. SBRT is used to treat extracranial sites. ASTRO also has an evidence-based guideline for SBRT for early stage NSCLC.63 It notes indications for SBRT in early stage lung cancer for medically inoperable or high surgical risk patients and for patients with limited metastatic disease, good performance status with the intention of eradicating all known active disease or greatly reducing the total disease burden in a manner that can extend PFS. Cao et al41 performed a systematic review and meta-analysis of SBRT vs surgery for patients with NSCLC. The authors found that current evidence suggests surgery is superior to SBRT in terms of mid- and long-term clinical outcomes, but SBRT is associated with lower perioperative mortality. It was also noted that the data on improved outcomes after surgery might be skewed due to an imbalance of baseline characteristics. Future studies were recommended that would confirm malignancy histopathology and then compare SBRT with minimally invasive anatomical resections. Rosen et al42 found that among healthy patients with clinical stage I NSCLC in the National Cancer Database, lobectomy was associated with a significantly better outcome than SBRT. This was also found in the Li43 article which noted a superior OS and long-term distant control for early stage NSCLC after surgery compared with SBRT after propensity score matching. Lischalk et al44 noted SBRT in 5 fractions to a total dose of 35 or 40 Gy was a safe and effective management strategy for high-risk central pulmonary metastatic lesions, though care had to be taken to limit the maximum point dose to the mainstem bronchus. In the Lodeweges45 article, pulmonary metastasectomy (PME) with clear margins was compared to SABR. The authors found despite higher age and shorter metastasis-free interval suggesting higher baseline risk for death after SABR, unadjusted reanalysis at almost 6 years of follow-up actually did not support that surgery for pulmonary oligometastases would result in better survival or LC compared with SABR. Nikitas et al46 noted that patients who received either synchronous or metachronous SBRT had no significant reduction in OS or toxicity when compared to single-course patients.
Yeung et al47 looked at the use of SBRT in hepatocellular carcinoma (HCC). They reported that SBRT provided good LC to small inoperable HCC. Also, SBRT could be delivered safely even after previous liver-directed therapies. It also did not preclude later additional alternative liver therapies. Although overall 32 percent of patients experienced greater than or equal to 3 plus toxicities, and 19 percent had a deterioration in Child-Pugh score of 2 or more points, these changes were mainly transient. The authors noted that excellent LC existed while disease progression outside of the irradiated site was prominent. Further studies were urged to examine combined therapy approaches to maximize disease control. The Onal48 study was designed to evaluate the feasibility of SBRT to breast cancer metastasized to the liver. They concluded SBRT was a conservative approach with excellent LC and limited toxicities. The Brunner49 study is the largest reported series on SBRT in cholangiocarcinoma. OS and LC were significantly improved after higher doses and tolerance was excellent.
Francolini et al50 noted that surgical resection was the treatment of choice for localized renal cell carcinoma (RCC) as nephron-sparing is so important. But it was also noted that RCC patients are often unfit for surgery due to multiple comorbidities. Therefore, active surveillance or ablative techniques are often suggested. This author notes that SBRT might be considered as an alternative treatment in these inoperable patients with primary RCC. Dose escalation to 48 Gy in 3 to 4 fractions was effective and well tolerated. Further studies to explore interactions between SBRT and immune therapy in the approach to RCC.
Draulans et al51 finds that SBRT is a valid treatment option for patients with low- and intermediate-risk prostate cancer. A study by King et al52 notes that prostate specific antigen (PSA) relapse-free survival rates after SBRT compared favorably with other definitive treatments for low- and intermediate-risk patients. The authors concluded that current evidence supports consideration of SBRT among the therapeutic options for low- and intermediate-risk patients. Freeman et al53 reported 5-year results for SBRT in localized prostate cancer demonstrating efficacy and safety for shorter course high fraction dose SBRT. ASTRO/ASCO/AUA have published an evidence-based guideline concerning hypofractionated RT for localized prostate cancer. Based on high-quality evidence, strong consensus was reached for offering moderate hypofractionation across risk groups to patients who opted to have external beam RT. The task force only conditionally recommended ultrahypofractionated radiation for low- and intermediate-risk prostate cancer. The task force strongly encouraged treatment of intermediate-risk patients to occur within the construct of a clinical trial or multi-institutional registry. And for high-risk patients, the task force conditionally recommended against routine use of ultrahypofractionated external beam RT.61
Zhan et al54 conducted a systematic review of the literature related to treatment for spinal AVMs. The authors identified 11 studies associated with radiosurgery or fractionated radiotherapy treatments for spinal vascular malformations. Four were done at the same institution and included overlapping patients. So there were truly 8 total articles that qualified. In this review, microsurgery and transarterial embolization were the mainstays of treatment for spinal AVMs. The use of SRS and fractionated radiotherapy for spinal AVM management has very limited associated literature.
Yazici et al65 recently reported (2022) on long term results of retrospective analysis regarding both stereotactic surgery and FSRT in 443 patients with 445 uveal melanomas who underwent CyberKnife® treatment between 2007 and 2019. 70% of the tumors were small/medium and 30% were large. The primary endpoints were LC, local recurrence-free survival (LRFS), enucleation-free survival (EFS) and treatment toxicity. After a median 74 month follow-up, SRS/FSRT demonstrated an 83% overall LC rate. The 5- and 10-year LRFS rate was 74% and 56% respectively. An increased dose was associated with higher LRFS and higher EFS rates. Related toxicity was noted in 49% of the eyes. Overall eye preservation rate was 62% and the 5- and 10-year EFS rate was 64% and 36% respectively. The authors also noted that the delivery of FSRT every other day resulted in a significantly lower rate of toxicity and enucleation compared to FSRT on consecutive days. Akbaba et al64 retrospectively analyzed the clinical outcomes, visual acuity and enucleation rates for 24 patients with primary uveal melanoma who were treated with linear accelerator-based SFRT during a period between 1991 and 2015. This therapy offered good LC rates with a local PFS of 82% after 5 years. Of all local progressions, 80% happened within the first 5 years post radiotherapy. In 1 case, enucleation was eventually needed. EFS was related to the radiotherapy dose (p<0.0001). A 2-year sight preservation rate of 75% was achieved which was comparable to brachytherapy or PBT and which was available in small center. Six late toxicities were observed. The ASTRO Model Policy for SRS2 does recommend coverage for uveal or ocular melanoma. That policy lists numerous evidence-based resources underlying that recommendation. While toxicity of RT to the eye is a concern, the risk of enucleation is not remarkably higher with other therapy approaches. Overall, the evidentiary support indicates that SRS is likely reasonable and necessary.
Regarding PBT, ASTRO reviewed this treatment via its emerging technology committee in 2012. Data was reviewed for PBT in CNS tumors, GI malignancies, lung, head and neck, prostate and pediatric tumors. There was not sufficient evidence to recommend it in lung cancer, head and neck cancer, and GI malignancies. There did appear to be some efficacy for PBT in HCC and prostate cancer, but there was no suggestion that it was superior to photon based approaches. Investigation is ongoing for use of PBT in large ocular melanomas and chordomas. More robust prospective clinical trials are needed to determine the appropriate clinical setting for PBT.60